11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigallocatechin-3-gallate inhibits inflammation and epithelial-mesenchymal transition through the PI3K/AKT pathway via upregulation of PTEN in asthma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asthma is a chronic disease associated with hyper-responsiveness, obstruction and remodeling of the airways. Epithelial-mesenchymal transition (EMT) has an important role in these alterations and may account for the accumulation of subepithelial mesenchymal cells, thus contributing to airway hyperresponsiveness and remodeling. Epigallo-catechin-3-gallate (EGCG), which is a type of polyphenol, is the most potent ingredient in green tea, and exhibits antibacterial, antiviral, antioxidative, anticancer and chemopreventive activities. Recently, numerous studies have investigated the protective effects of EGCG against asthma and other lung diseases. In the present study, the role of EGCG in ovalbumin (OVA)-challenged asthmatic mice was determined. In addition, the inhibitory effects of EGCG against transforming growth factor (TGF)-β1-induced EMT and migration of 16HBE cells, and the underlying mechanisms of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, were investigated by immunofluorescence, Transwell, wound healing assay and western blot analysis, respectively. The results indicated that EGCG may suppress inflammation and inflammatory cell infiltration into the lungs of OVA-challenged asthmatic mice, and may also inhibit EMT via the PI3K/AKT signaling pathway through upregulating the expression of phosphatase and tensin homolog (PTEN) in vivo and in vitro. The present study also revealed the anti-migratory effects of EGCG in TGF-β1-induced 16HBE cells, thus suggesting it may reduce airway remodeling. The present study provides a novel insight into understanding the protective effects of EGCG on airway remodeling in asthma, and indicates that EGCG may be useful as an adjuvant therapy for bronchial asthma.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease.

            Epithelial-mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells undergo transition to a mesenchymal phenotype giving rise to fibroblasts and myofibroblasts, is increasingly recognized as playing an important role in repair and scar formation following epithelial injury. The extent to which this process contributes to fibrosis following injury in the lung is a subject of active investigation. Recently, it was demonstrated that transforming growth factor (TGF)-beta induces EMT in alveolar epithelial cells (AEC) in vitro and in vivo, and epithelial and mesenchymal markers have been colocalized to hyperplastic type II (AT2) cells in lung tissue from patients with idiopathic pulmonary fibrosis (IPF), suggesting that AEC may exhibit extreme plasticity and serve as a source of fibroblasts and/or myofibroblasts in lung fibrosis. In this review, we describe the characteristic features of EMT and its mechanistic underpinnings. We further describe the contribution of EMT to fibrosis in adult tissues following injury, focusing especially on the critical role of TGF-beta and its downstream mediators in this process. Finally, we highlight recent descriptions of EMT in the lung and the potential implications of this process for the treatment of fibrotic lung disease. Treatment for fibrosis of the lung in diseases such as IPF has heretofore focused largely on amelioration of potential inciting processes such as inflammation. It is hoped that this review will stimulate further consideration of the cellular mechanisms of fibrogenesis in the lung and especially the role of the epithelium in this process, potentially leading to innovative avenues of investigation and treatment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Asthma

                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                February 2018
                28 November 2017
                28 November 2017
                : 41
                : 2
                : 818-828
                Affiliations
                Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
                Author notes
                Correspondence to: Dr Yunxiao Shang, Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004, P.R. China, E-mail: shangyunxiao827@ 123456163.com
                Article
                ijmm-41-02-0818
                10.3892/ijmm.2017.3292
                5752157
                29207033
                eb45e1da-c33e-4e7d-aee3-992307ca10e4
                Copyright: © Yang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 11 October 2016
                : 25 October 2017
                Categories
                Articles

                phosphatase and tensin homolog,bronchial asthma,epigallocatechin-3-gallate,ovalbumin,epithelial-mesenchymal transition,phosphatidylinositol 3-kinase/protein kinase b

                Comments

                Comment on this article