1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intravenous N-Acetylcysteine to Prevent Cisplatin-Induced Hearing Loss in Children: A Nonrandomized Controlled Phase I Trial

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          Cisplatin-induced hearing loss (CIHL) is common and permanent. As compared with earlier otoprotectants, we hypothesized N-acetylcysteine (NAC) offers potential for stronger otoprotection through stimulation of glutathione (GSH) production. This study tested the optimal dose, safety, and efficacy of NAC to prevent CIHL.

          Patients and Methods:

          In this nonrandomized, controlled phase Ia/Ib trial, children and adolescents newly diagnosed with nonmetastatic, cisplatin-treated tumors received NAC intravenously 4 hours post-cisplatin. The trial performed dose-escalation across three dose levels to establish a safe dose that exceeded the targeted peak serum NAC concentration of 1.5 mmol/L (as identified from preclinical models). Patients with metastatic disease or who were otherwise ineligible were enrolled in an observation-only/control arm. To evaluate efficacy, serial age-appropriate audiology assessments were performed. Integrated biology examined genes involved in GSH metabolism and post-NAC GSH concentrations.

          Results:

          Of 52 patients enrolled, 24 received NAC and 28 were in the control arm. The maximum tolerated dose was not reached; analysis of peak NAC concentration identified 450 mg/kg as the recommended phase II dose (RP2D). Infusion-related reactions were common. No severe adverse events occurred. Compared with the control arm, NAC decreased likelihood of CIHL at the end of cisplatin therapy [OR, 0.13; 95% confidence interval (CI), 0.021–0.847; P = 0.033] and recommendations for hearing intervention at end of study (OR, 0.082; 95% CI, 0.011–0.60; P = 0.014). NAC increased GSH; GSTP1 influenced risk for CIHL and NAC otoprotection.

          Conclusions:

          NAC was safe at the RP2D, with strong evidence for efficacy to prevent CIHL, warranting further development as a next-generation otoprotectant.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanisms of Cisplatin Nephrotoxicity

          Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why

            The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidant Mechanisms in Renal Injury and Disease.

              A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Clinical Cancer Research
                American Association for Cancer Research (AACR)
                1078-0432
                1557-3265
                July 05 2023
                May 03 2023
                July 05 2023
                May 03 2023
                : 29
                : 13
                : 2410-2418
                Article
                10.1158/1078-0432.CCR-23-0252
                10330342
                37134194
                ed48c06f-dd4f-47a2-b888-5f0a0bd1d0c3
                © 2023
                History

                Comments

                Comment on this article