0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The MukB-topoisomerase IV interaction mutually suppresses their catalytic activities

      research-article
      , ,
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bacterial condensin MukB and the cellular chromosomal decatenase, topoisomerase IV interact and this interaction is required for proper condensation and topological ordering of the chromosome. Here, we show that Topo IV stimulates MukB DNA condensation by stabilizing loops in DNA: MukB alone can condense nicked plasmid DNA into a protein–DNA complex that has greater electrophoretic mobility than that of the DNA alone, but both MukB and Topo IV are required for a similar condensation of a linear DNA representing long stretches of the chromosome. Remarkably, we show that rather than MukB stimulating the decatenase activity of Topo IV, as has been argued previously, in stoichiometric complexes of the two enzymes each inhibits the activity of the other: the ParC subunit of Topo IV inhibits the MukF-stimulated ATPase activity of MukB and MukB inhibits both DNA crossover trapping and DNA cleavage by Topo IV. These observations suggest that when in complex on the DNA, Topo IV inhibits the motor function of MukB and the two proteins provide a stable scaffold for chromosomal DNA condensation.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA loop extrusion by human cohesin

            Eukaryotic genomes are folded into loops and topologically-associating domains (TADs), which contribute to chromatin structure, gene regulation and recombination. These structures depend on cohesin, a ring-shaped DNA-entrapping ATPase complex which has been proposed to form loops by extrusion. Such an activity has been observed for condensin, which forms loops in mitosis, but not for cohesin. Here we show, using biochemical reconstitution, that single human cohesin complexes form DNA loops symmetrically at up to 2.1 kbp per second. Loop formation and maintenance depend on cohesin’s ATPase activity and on NIPBL-MAU2, but not on topological entrapment of DNA by cohesin. During loop formation, cohesin and NIPBL-MAU2 reside at the base of loops, indicating that they generate loops by extrusion. Our results show that cohesin and NIPBL-MAU2 form an active holo-enzyme that interacts with DNA either pseudo-topologically or non-topologically to extrude genomic interphase DNA into loops.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human cohesin compacts DNA by loop extrusion

              Cohesin is a chromosome-bound multisubunit ATPase complex. Following its loading onto chromosomes, cohesin generates chromosome loops to regulate chromosome functions. It has been suggested that cohesin organizes the genome via loop extrusion, but direct evidence is lacking. Here, we use single-molecule imaging to show that recombinant human cohesin-NIPBL complex compacts both naked and nucleosome-bound DNA by extruding DNA loops. DNA compaction by cohesin requires ATP hydrolysis, and is force-sensitive. This compaction is processive over tens of kilobases (kb) at an average rate of 0.5 kb per second. Compaction of double-tethered DNA suggests that a cohesin dimer extrudes DNA loops bidirectionally. Our results establish cohesin-NIPBL as an ATP-driven molecular machine capable of loop extrusion.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                21 March 2022
                08 November 2021
                08 November 2021
                : 50
                : 5
                : 2621-2634
                Affiliations
                Molecular Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, NY 10065, USA
                Molecular Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, NY 10065, USA
                Molecular Biology Program, Memorial Sloan Kettering Cancer Center , 1275 York Avenue, New York, NY 10065, USA
                Author notes
                To whom correspondence should be addressed. Tel: +1 212 639 5890; Email: kmarians@ 123456sloankettering.edu
                Author information
                https://orcid.org/0000-0003-3821-498X
                Article
                gkab1027
                10.1093/nar/gkab1027
                8934648
                34747485
                f08fb328-312e-41a5-bb0f-540d679c48c2
                © The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 October 2021
                : 11 October 2021
                : 26 May 2021
                Page count
                Pages: 14
                Funding
                Funded by: National Institutes of Health, DOI 10.13039/100000002;
                Award ID: R35GM126907
                Funded by: National Cancer Institute Cancer Center;
                Award ID: P30CA008748
                Categories
                AcademicSubjects/SCI00010
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article