57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glyburide inhibits the Cryopyrin/Nalp3 inflammasome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glyburide, a sulfonylurea drug commonly used to treat type 2 diabetes, shuts down IL-1β secretion by preventing Cyropyrin activation.

          Abstract

          Inflammasomes activate caspase-1 for processing and secretion of the cytokines interleukin-1β (IL-1β) and IL-18. Cryopyrin/NALP3/NLRP3 is an essential component of inflammasomes triggered by microbial ligands, danger-associated molecular patterns (DAMPs), and crystals. Inappropriate Cryopyrin activity has been incriminated in the pathogenesis of gouty arthritis, Alzheimer's, and silicosis. Therefore, inhibitors of the Nalp3 inflammasome offer considerable therapeutic promise. In this study, we show that the type 2 diabetes drug glyburide prevented activation of the Cryopyrin inflammasome. Glyburide's cyclohexylurea group, which binds to adenosine triphosphatase (ATP)–sensitive K + (K ATP) channels for insulin secretion, is dispensable for inflammasome inhibition. Macrophages lacking K ATP subunits or ATP-binding cassette transporters also activate the Cryopyrin inflammasome normally. Glyburide analogues inhibit ATP- but not hypothermia-induced IL-1β secretion from human monocytes expressing familial cold-associated autoinflammatory syndrome–associated Cryopyrin mutations, thus suggesting that inhibition occurs upstream of Cryopyrin. Concurrent with the role of Cryopyrin in endotoxemia, glyburide significantly delays lipopolysaccharide-induced lethality in mice. Therefore, glyburide is the first identified compound to prevent Cryopyrin activation and microbial ligand-, DAMP-, and crystal-induced IL-1β secretion.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The Nalp3 inflammasome is essential for the development of silicosis.

          Inhalation of crystalline silica and asbestos is known to cause the progressive pulmonary fibrotic disorders silicosis and asbestosis, respectively. Although alveolar macrophages are believed to initiate these inflammatory responses, the mechanism by which this occurs has been unclear. Here we show that the inflammatory response and subsequent development of pulmonary fibrosis after inhalation of silica is dependent on the Nalp3 inflammasome. Stimulation of macrophages with silica results in the activation of caspase-1 in a Nalp3-dependent manner. Macrophages deficient in components of the Nalp3 inflammasome were incapable of secreting the proinflammatory cytokines interleukin (IL)-1beta and IL-18 in response to silica. Similarly, asbestos was capable of activating caspase-1 in a Nalp3-dependent manner. Activation of the Nalp3 inflammasome by silica required both an efflux of intracellular potassium and the generation of reactive oxygen species. This study demonstrates a key role for the Nalp3 inflammasome in the pathogenesis of pneumoconiosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1.

            Mutations in the NALP3/CIAS1/cryopyrin gene are linked to three autoinflammatory disorders: Muckle-Wells syndrome, familial cold autoinflammatory syndrome, and chronic infantile neurologic cutaneous and articular syndrome. NALP3, with the adaptor molecule ASC, has been proposed to form a caspase-1-activating "inflammasome," a complex with pro-IL1beta-processing activity. Here, we demonstrate the effect of NALP3 deficiency on caspase-1 function. NALP3 was essential for the ATP-driven activation of caspase-1 in lipopolysaccharide-stimulated macrophages and for the efficient secretion of the caspase-1-dependent cytokines IL-1alpha, IL-1beta, and IL-18. IL-1beta has been shown to play a key role in contact hypersensitivity; we show that ASC- and NALP3-deficient mice also demonstrate an impaired contact hypersensitivity response to the hapten trinitrophenylchloride. NALP3, however, was not required for caspase-1 activation by Salmonella typhimurium, and NALP3 deficiency only partially protects mice from the lethal effects of endotoxin. These data suggest that NALP3 plays a specific role in the caspase-1 activation pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered cytokine production in mice lacking P2X(7) receptors.

              The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                5 October 2009
                : 187
                : 1
                : 61-70
                Affiliations
                [1 ]Department of Physiological Chemistry , [2 ]Department of Protein Engineering , and [3 ]Department of Immunology, Genentech, South San Francisco, CA 94080
                [4 ]Division of Rheumatology, Allergy, and Immunology , [5 ]Department of Pediatrics , and [6 ]Ludwig Institute of Cancer Research, School of Medicine, University of California, San Diego, La Jolla, CA 92093
                Author notes
                Correspondence to Vishva M. Dixit: Dixit.vishva@ 123456gene.com
                Article
                200903124
                10.1083/jcb.200903124
                2762099
                19805629
                f1ad90aa-5e28-4f37-bf0e-f66019397d78
                © 2009 Lamkanfi et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 23 March 2009
                : 3 September 2009
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article