37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formaldehyde and Epigenetic Alterations: MicroRNA Changes in the Nasal Epithelium of Nonhuman Primates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Formaldehyde is an air pollutant present in both indoor and outdoor atmospheres. Because of its ubiquitous nature, it is imperative to understand the mechanisms underlying formaldehyde-induced toxicity and carcinogenicity. MicroRNAs (miRNAs) can influence disease caused by environmental exposures, yet miRNAs are understudied in relation to formaldehyde. Our previous investigation demonstrated that formaldehyde exposure in human lung cells caused disruptions in miRNA expression profiles in vitro.

          Objectives: Using an in vivo model, we set out to test the hypothesis that formaldehyde inhalation exposure significantly alters miRNA expression profiles within the nasal epithelium of nonhuman primates.

          Methods: Cynomolgus macaques were exposed by inhalation to approximately 0, 2, or 6 ppm formaldehyde for 6 hr/day for 2 consecutive days. Small RNAs were extracted from nasal samples and assessed for genome-wide miRNA expression levels. Transcriptional targets of formaldehyde-altered miRNAs were computationally predicted, analyzed at the systems level, and assessed using real-time reverse transcriptase polymerase chain reaction (RT-PCR).

          Results: Expression analysis revealed that 3 and 13 miRNAs were dysregulated in response to 2 and 6 ppm formaldehyde, respectively. Transcriptional targets of the miRNA with the greatest increase (miR-125b) and decrease (miR-142-3p) in expression were predicted and analyzed at the systems level. Enrichment was identified for miR-125b targeting genes involved in apoptosis signaling. The apoptosis-related targets were functionally tested using RT-PCR, where all targets showed decreased expression in formaldehyde-exposed samples.

          Conclusions: Formaldehyde exposure significantly disrupts miRNA expression profiles within the nasal epithelium, and these alterations likely influence apoptosis signaling.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Bioactive sphingolipids: metabolism and function.

          Sphingolipids (SLs) are essential constituents of eukaryotic cells. Besides playing structural roles in cellular membranes, some metabolites, including ceramide, sphingosine, and sphingosine-1-phosphate, have drawn attention as bioactive signaling molecules involved in the regulation of cell growth, differentiation, senescence, and apoptosis. Understanding the many cell regulatory functions of SL metabolites requires an advanced knowledge of how and where in the cell they are generated, converted, or degraded. This review will provide a short overview of the metabolism, localization, and compartmentalization of SLs. Also, a discussion on bioactive members of the SL family and inducers of SL enzymes that lead to ceramide generation will be presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression.

            Paclitaxel (Taxol) is an effective chemotherapeutic agent for treatment of cancer patients. Despite impressive initial clinical responses, the majority of patients eventually develop some degree of resistance to Taxol-based therapy. The mechanisms underlying cancer cells resistance to Taxol are not fully understood. MicroRNA (miRNA) has emerged to play important roles in tumorigenesis and drug resistance. However, the interaction between the development of Taxol resistance and miRNA has not been previously explored. In this study we utilized a miRNA array to compare the differentially expressed miRNAs in Taxol-resistant and their Taxol-sensitive parental cells. We verified that miR-125b, miR-221, miR-222, and miR-923 were up-regulated in Taxol-resistant cancer cells by real-time PCR. We further investigated the role and mechanisms of miR-125b in Taxol resistance. We found that miR-125b was up-regulated in Taxol-resistant cells, causing a marked inhibition of Taxol-induced cytotoxicity and apoptosis and a subsequent increase in the resistance to Taxol in cancer cells. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) is a direct target of miR-125b. Down-regulation of Bak1 suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol. Restoring Bak1 expression by either miR-125b inhibitor or re-expression of Bak1 in miR-125b-overexpressing cells recovered Taxol sensitivity, overcoming miR-125-mediated Taxol resistance. Taken together, our data strongly support a central role for miR-125b in conferring Taxol resistance through the suppression of Bak1 expression. This finding has important implications in the development of targeted therapeutics for overcoming Taxol resistance in a number of different tumor histologies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins.

              Using highly sensitive microarray-based procedures, we identified eight microRNAs (miRNAs) showing robust differential expression between 31 laser-capture-microdissected nasopharyngeal carcinomas (NPCs) and 10 normal healthy nasopharyngeal epithelial samples. In particular, miRNA mir-29c was expressed at one-fifth the levels in tumors as in normal epithelium. In NPC tumors, the lower mir-29c levels correlated with higher levels of multiple mRNAs whose 3' UTRs can bind mir-29c at target sequences conserved across many vertebrates. In cultured cells, introduction of mir-29c down-regulated these genes at the level of mRNA and inhibited expression of luciferase encoded by vectors having the 3' UTRs of these genes. Moreover, for each of several genes tested, mutating the mir-29c target sites in the 3' UTR abrogated mir-29c-induced inhibition of luciferase expression. Most of the mir-29c-targeted genes identified encode extracellular matrix proteins, including multiple collagens and laminin gamma1, that are associated with tumor cell invasiveness and metastatic potential, prominent characteristics of NPC. Thus, we identify eight miRNAs differentially expressed in NPC and demonstrate the involvement of one in regulating genes involved in metastasis.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                15 January 2013
                March 2013
                : 121
                : 3
                : 339-344
                Affiliations
                [1 ]Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, and
                [2 ]Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
                [3 ]Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
                [4 ]Center for Environmental Health and Susceptibility, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
                Author notes
                Address correspondence to R.C. Fry, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Dr., CB 7431, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA. Telephone: (919) 843-6864. E-mail: rfry@ 123456unc.edu
                Article
                ehp.1205582
                10.1289/ehp.1205582
                3621188
                23322811
                f267e897-d743-4d6d-a9c3-43573c178b9e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, properly cited.

                History
                : 06 June 2012
                : 14 January 2013
                Categories
                Research

                Public health
                apoptosis,epigenetics,formaldehyde,microrna,primate,systems biology
                Public health
                apoptosis, epigenetics, formaldehyde, microrna, primate, systems biology

                Comments

                Comment on this article