7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Determinants of Cancer Therapy Resistance to HDAC Inhibitor-Induced Autophagy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone deacetylation inhibitors (HDACi) offer high potential for future cancer therapy as they can re-establish the expression of epigenetically silenced cell death programs. HDACi-induced autophagy offers the possibility to counteract the frequently present apoptosis-resistance as well as stress conditions of cancer cells. Opposed to the function of apoptosis and necrosis however, autophagy activated in cancer cells can engage in a tumor-suppressive or tumor-promoting manner depending on mostly unclarified factors. As a physiological adaption to apoptosis resistance in early phases of tumorigenesis, autophagy seems to resume a tumorsuppressive role that confines tumor necrosis and inflammation or even induces cell death in malignant cells. During later stages of tumor development, chemotherapeutic drug-induced autophagy seems to be reprogrammed by the cancer cell to prevent its elimination and support tumor progression. Consistently, HDACi-mediated activation of autophagy seems to exert a protective function that prevents the induction of apoptotic or necrotic cell death in cancer cells. Thus, resistance to HDACi-induced cell death is often encountered in various types of cancer as well. The current review highlights the different mechanisms of HDACi-elicited autophagy and corresponding possible molecular determinants of therapeutic resistance in cancer.

          Related collections

          Most cited references200

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum

            Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.

              The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                31 December 2019
                January 2020
                : 12
                : 1
                : 109
                Affiliations
                [1 ]Department of Cranio-Maxillofacial Surgery, University of Münster, 48149 Münster, Germany; leopold.froehlich@ 123456ukmuenster.de
                [2 ]Department of Medical Microbiology, University of Münster, 48149 Münster, Germany
                Author notes
                [* ]Correspondence: maria.mrakovcic@ 123456web.de ; Tel.: +49-251-83-55369
                Author information
                https://orcid.org/0000-0001-7408-2166
                Article
                cancers-12-00109
                10.3390/cancers12010109
                7016854
                31906235
                f26be693-be06-4aa9-948c-36306ce4f5ed
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 November 2019
                : 20 December 2019
                Categories
                Review

                histone deacetylase inhibitor,hdaci,drug resistance,autophagy,cell death,cancer,tumor,chemotherapy,radiotherapy

                Comments

                Comment on this article