52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Social and environmental risk factors in the emergence of infectious diseases

      review-article
      1 , , 2 ,
      Nature Medicine
      Nature Publishing Group US

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fifty years ago, the age-old scourge of infectious disease was receding in the developed world in response to improved public health measures, while the advent of antibiotics, better vaccines, insecticides and improved surveillance held the promise of eradicating residual problems. By the late twentieth century, however, an increase in the emergence and re-emergence of infectious diseases was evident in many parts of the world. This upturn looms as the fourth major transition in human–microbe relationships since the advent of agriculture around 10,000 years ago. About 30 new diseases have been identified, including Legionnaires' disease, human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), hepatitis C, bovine spongiform encephalopathy (BSE)/variant Creutzfeldt-Jakob disease (vCJD), Nipah virus, several viral hemorrhagic fevers and, most recently, severe acute respiratory syndrome (SARS) and avian influenza. The emergence of these diseases, and resurgence of old ones like tuberculosis and cholera, reflects various changes in human ecology: rural-to-urban migration resulting in high-density peri-urban slums; increasing long-distance mobility and trade; the social disruption of war and conflict; changes in personal behavior; and, increasingly, human-induced global changes, including widespread forest clearance and climate change. Political ignorance, denial and obduracy (as with HIV/AIDS) further compound the risks. The use and misuse of medical technology also pose risks, such as drug-resistant microbes and contaminated equipment or biological medicines. A better understanding of the evolving social dynamics of emerging infectious diseases ought to help us to anticipate and hopefully ameliorate current and future risks.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Factors in the emergence of infectious diseases.

          "Emerging" infectious diseases can be defined as infections that have newly appeared in a population or have existed but are rapidly increasing in incidence or geographic range. Among recent examples are HIV/AIDS, hantavirus pulmonary syndrome, Lyme disease, and hemolytic uremic syndrome (a foodborne infection caused by certain strains of Escherichia coli). Specific factors precipitating disease emergence can be identified in virtually all cases. These include ecological, environmental, or demographic factors that place people at increased contact with a previously unfamiliar microbe or its natural host or promote dissemination. These factors are increasing in prevalence; this increase, together with the ongoing evolution of viral and microbial variants and selection for drug resistance, suggests that infections will continue to emerge and probably increase and emphasizes the urgent need for effective surveillance and control. Dr. David Satcher's article and this overview inaugurate Perspectives, a regular section in this journal intended to present and develop unifying concepts and strategies for considering emerging infections and their underlying factors. The editors welcome, as contributions to the Perspectives section, overviews, syntheses, and case studies that shed light on how and why infections emerge, and how they may be anticipated and prevented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands.

            An outbreak of highly pathogenic avian influenza A virus subtype H7N7 started at the end of February, 2003, in commercial poultry farms in the Netherlands. Although the risk of transmission of these viruses to humans was initially thought to be low, an outbreak investigation was launched to assess the extent of transmission of influenza A virus subtype H7N7 from chickens to humans. All workers in poultry farms, poultry farmers, and their families were asked to report signs of conjunctivitis or influenza-like illness. People with complaints were tested for influenza virus type A subtype H7 (A/H7) infection and completed a health questionnaire about type of symptoms, duration of illness, and possible exposures to infected poultry. 453 people had health complaints--349 reported conjunctivitis, 90 had influenza-like illness, and 67 had other complaints. We detected A/H7 in conjunctival samples from 78 (26.4%) people with conjunctivitis only, in five (9.4%) with influenza-like illness and conjunctivitis, in two (5.4%) with influenza-like illness only, and in four (6%) who reported other symptoms. Most positive samples had been collected within 5 days of symptom onset. A/H7 infection was confirmed in three contacts (of 83 tested), one of whom developed influenza-like illness. Six people had influenza A/H3N2 infection. After 19 people had been diagnosed with the infection, all workers received mandatory influenza virus vaccination and prophylactic treatment with oseltamivir. More than half (56%) of A/H7 infections reported here arose before the vaccination and treatment programme. We noted an unexpectedly high number of transmissions of avian influenza A virus subtype H7N7 to people directly involved in handling infected poultry, and we noted evidence for person-to-person transmission. Our data emphasise the importance of adequate surveillance, outbreak preparedness, and pandemic planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia.

              Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died. Samples of tissue were taken at necropsy. Blood and cerebrospinal-fluid (CSF) samples taken before death were cultured for viruses, and tested for antibodies to viruses. The three pig-farmers presented with fever, headache, and altered level of consciousness. Myoclonus was present in two patients. There were signs of brainstem dysfunction with hypertension and tachycardia. Rapid deterioration led to irreversible hypotension and death. A virus causing syncytial formation of vero cells was cultured from the CSF of two patients after 5 days; the virus stained positively with antibodies against Hendra virus by indirect immunofluorescence. IgM capture ELISA showed that all three patients had IgM antibodies in CSF against Hendra viral antigens. Necropsy showed widespread microinfarction in the central nervous system and other organs resulting from vasculitis-induced thrombosis. There was no clinical evidence of pulmonary involvement. Inclusion bodies likely to be of viral origin were noted in neurons near vasculitic blood vessels. The causative agent was a previously undescribed paramyxovirus related to the Hendra virus. Close contact with infected pigs may be the source of the viral transmission. Clinically and epidemiologically the infection is distinct from infection by the Hendra virus. We propose that this Hendra-like virus was the cause of the outbreak of encephalitis in Malaysia.
                Bookmark

                Author and article information

                Contributors
                r.weiss@ucl.ac.uk
                tony.mcmichael@anu.edu.au
                Journal
                Nat Med
                Nat. Med
                Nature Medicine
                Nature Publishing Group US (New York )
                1078-8956
                1546-170X
                2004
                : 10
                : Suppl 12
                : S70-S76
                Affiliations
                [1 ]GRID grid.83440.3b, ISNI 0000000121901201, Division of Infection and Immunity, , Wohl Virion Centre, University College London, ; W1T 4JF UK
                [2 ]GRID grid.1001.0, ISNI 0000 0001 2180 7477, National Centre for Epidemiology and Population Health, The Australian National University, ; Canberra, ACT 0200 Australia
                Article
                BFnm1150
                10.1038/nm1150
                7095886
                15577934
                f3db8062-447a-4968-bb7f-5b70bd94d9f1
                © Nature Publishing Group 2004

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © The Author(s), under exclusive licence to Springer Nature America, Inc. 2004

                Medicine
                Medicine

                Comments

                Comment on this article