32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunology, already a discipline in its own right, has become a major part of many different medical fields. However, its relationship to orthopedics and trauma surgery has unfortunately, and perhaps unjustly, been developing rather slowly. Discoveries in recent years have emphasized the immense breadth of communication and connection between both systems and, importantly, the highly promising therapeutic opportunities. Recent discoveries of factors originally assigned to the immune system have now also been shown to have a significant impact on bone health and disease, which has greatly changed how we approach treatment of bone pathologies. In case of bone fracture, immune cells, especially macrophages, are present throughout the whole healing process, assure defense against pathogens and discharge a complex variety of effectors to regulate bone modeling. In rheumatoid arthritis and osteoporosis, the immune system contributes to the formation of the pathological and chronic conditions. Fascinatingly, prosthesis failure is not at all solely a mechanical problem of improper strain but works in conjunction with an active contribution of the immune system as a reaction to irritant debris from material wear. Unraveling conjoined mechanisms of the immune and osseous systems heralds therapeutic possibilities for ailments of both. Contemplation of the bone as merely an unchanging support pillar is outdated and obsolete. Instead it is mandatory that this highly diverse network be incorporated in our understanding of the immune system and hematopoiesis.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation

          Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of fracture healing.

            The biology of fracture healing is a complex biological process that follows specific regenerative patterns and involves changes in the expression of several thousand genes. Although there is still much to be learned to fully comprehend the pathways of bone regeneration, the over-all pathways of both the anatomical and biochemical events have been thoroughly investigated. These efforts have provided a general understanding of how fracture healing occurs. Following the initial trauma, bone heals by either direct intramembranous or indirect fracture healing, which consists of both intramembranous and endochondral bone formation. The most common pathway is indirect healing, since direct bone healing requires an anatomical reduction and rigidly stable conditions, commonly only obtained by open reduction and internal fixation. However, when such conditions are achieved, the direct healing cascade allows the bone structure to immediately regenerate anatomical lamellar bone and the Haversian systems without any remodelling steps necessary. In all other non-stable conditions, bone healing follows a specific biological pathway. It involves an acute inflammatory response including the production and release of several important molecules, and the recruitment of mesenchymal stem cells in order to generate a primary cartilaginous callus. This primary callus later undergoes revascularisation and calcification, and is finally remodelled to fully restore a normal bone structure. In this article we summarise the basic biology of fracture healing. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of osteoporosis: concepts, conflicts, and prospects.

              Osteoporosis is a disorder in which loss of bone strength leads to fragility fractures. This review examines the fundamental pathogenetic mechanisms underlying this disorder, which include: (a) failure to achieve a skeleton of optimal strength during growth and development; (b) excessive bone resorption resulting in loss of bone mass and disruption of architecture; and (c) failure to replace lost bone due to defects in bone formation. Estrogen deficiency is known to play a critical role in the development of osteoporosis, while calcium and vitamin D deficiencies and secondary hyperparathyroidism also contribute. There are multiple mechanisms underlying the regulation of bone remodeling, and these involve not only the osteoblastic and osteoclastic cell lineages but also other marrow cells, in addition to the interaction of systemic hormones, local cytokines, growth factors, and transcription factors. Polymorphisms of a large number of genes have been associated with differences in bone mass and fragility. It is now possible to diagnose osteoporosis, assess fracture risk, and reduce that risk with antiresorptive or other available therapies. However, new and more effective approaches are likely to emerge from a better understanding of the regulators of bone cell function.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                31 January 2020
                2020
                : 11
                : 58
                Affiliations
                [1] 1Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn , Bonn, Germany
                [2] 2Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg , Mannheim, Germany
                Author notes

                Edited by: Fabrice Cognasse, Groupe Sur L'immunité Des Muqueuses Et Agents Pathogènes (GIMAP), France

                Reviewed by: Michael Bonelli, Medical University of Vienna, Austria; Silvia Brunelli, University of Milano Bicocca, Italy

                *Correspondence: Frank A. Schildberg frank.schildberg@ 123456ukbonn.de

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00058
                7004969
                32082321
                f5303338-ada3-419c-8700-f22f6042b8e9
                Copyright © 2020 Guder, Gravius, Burger, Wirtz and Schildberg.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2019
                : 09 January 2020
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 230, Pages: 19, Words: 15980
                Categories
                Immunology
                Review

                Immunology
                osteoimmunology,bone,immune cells,orthopedics and trauma surgery,bone fracture,rheumatoid arthritis,osteoporosis,prosthesis failure

                Comments

                Comment on this article