17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulatory cytokine function in the respiratory tract

      review-article
      1 , 2 , 1 , 2 ,
      Mucosal Immunology
      Nature Publishing Group US

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The respiratory tract is an important site of immune regulation; required to allow protective immunity against pathogens, while minimizing tissue damage and avoiding aberrant inflammatory responses to inhaled allergens. Several cell types work in concert to control pulmonary immune responses and maintain tolerance in the respiratory tract, including regulatory and effector T cells, airway and interstitial macrophages, dendritic cells and the airway epithelium. The cytokines transforming growth factor β, interleukin (IL-) 10, IL-27, and IL-35 are key coordinators of immune regulation in tissues such as the lung. Here, we discuss the role of these cytokines during respiratory infection and allergic airway disease, highlighting the critical importance of cellular source and immunological context for the effects of these cytokines in vivo.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          The inhibitory cytokine IL-35 contributes to regulatory T-cell function.

          Regulatory T (T(reg)) cells are a critical sub-population of CD4+ T cells that are essential for maintaining self tolerance and preventing autoimmunity, for limiting chronic inflammatory diseases, such as asthma and inflammatory bowel disease, and for regulating homeostatic lymphocyte expansion. However, they also suppress natural immune responses to parasites and viruses as well as anti-tumour immunity induced by therapeutic vaccines. Although the manipulation of T(reg) function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. Here we demonstrate that Epstein-Barr-virus-induced gene 3 (Ebi3, which encodes IL-27beta) and interleukin-12 alpha (Il12a, which encodes IL-12alpha/p35) are highly expressed by mouse Foxp3+ (forkhead box P3) T(reg) cells but not by resting or activated effector CD4+ T (T(eff)) cells, and that an Ebi3-IL-12alpha heterodimer is constitutively secreted by T(reg) but not T(eff) cells. Both Ebi3 and Il12a messenger RNA are markedly upregulated in T(reg) cells co-cultured with T(eff) cells, thereby boosting Ebi3 and IL-12alpha production in trans. T(reg)-cell restriction of this cytokine occurs because Ebi3 is a downstream target of Foxp3, a transcription factor that is required for T(reg)-cell development and function. Ebi3-/- and Il12a-/- T(reg) cells have significantly reduced regulatory activity in vitro and fail to control homeostatic proliferation and to cure inflammatory bowel disease in vivo. Because these phenotypic characteristics are distinct from those of other IL-12 family members, this novel Ebi3-IL-12alpha heterodimeric cytokine has been designated interleukin-35 (IL-35). Ectopic expression of IL-35 confers regulatory activity on naive T cells, whereas recombinant IL-35 suppresses T-cell proliferation. Taken together, these data identify IL-35 as a novel inhibitory cytokine that may be specifically produced by T(reg) cells and is required for maximal suppressive activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alveolar macrophages: plasticity in a tissue-specific context.

            Alveolar macrophages exist in a unique microenvironment and, despite historical evidence showing that they are in close contact with the respiratory epithelium, have until recently been investigated in isolation. The microenvironment of the airway lumen has a considerable influence on many aspects of alveolar macrophage phenotype, function and turnover. As the lungs adapt to environmental challenges, so too do alveolar macrophages adapt to accommodate the ever-changing needs of the tissue. In this Review, we discuss the unique characteristics of alveolar macrophages, the mechanisms that drive their adaptation and the direct and indirect influences of epithelial cells on them. We also highlight how airway luminal macrophages function as sentinels of a healthy state and how they do not respond in a pro-inflammatory manner to antigens that do not disrupt lung structure. The unique tissue location and function of alveolar macrophages distinguish them from other macrophage populations and suggest that it is important to classify macrophages according to the site that they occupy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.

              Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
                Bookmark

                Author and article information

                Contributors
                c.lloyd@imperial.ac.uk
                Journal
                Mucosal Immunol
                Mucosal Immunol
                Mucosal Immunology
                Nature Publishing Group US (New York )
                1933-0219
                1935-3456
                15 March 2019
                15 March 2019
                2019
                : 12
                : 3
                : 589-600
                Affiliations
                [1 ]ISNI 0000 0001 2113 8111, GRID grid.7445.2, National Heart and Lung Institute, , Imperial College London, ; London, United Kingdom
                [2 ]ISNI 0000 0001 2113 8111, GRID grid.7445.2, Asthma UK Centre in Allergic Mechanisms of Asthma, , Imperial College London, ; London, United Kingdom
                Author information
                http://orcid.org/0000-0003-4353-4857
                Article
                158
                10.1038/s41385-019-0158-0
                7051906
                30874596
                f5927b0a-25c1-4c50-b8a4-e7a0a8a78c3b
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 January 2019
                : 22 February 2019
                : 27 February 2019
                Categories
                Review Article
                Custom metadata
                © Society for Mucosal Immunology 2019

                Immunology
                Immunology

                Comments

                Comment on this article