38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Journey of in vivo Virus Engineered Dendritic Cells From Bench to Bedside: A Bumpy Road

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cells (DCs) are recognized as highly potent antigen-presenting cells that are able to stimulate cytotoxic T lymphocyte (CTL) responses with antitumor activity. Consequently, DCs have been explored as cellular vaccines in cancer immunotherapy. To that end, DCs are modified with tumor antigens to enable presentation of antigen-derived peptides to CTLs. In this review we discuss the use of viral vectors for in situ modification of DCs, focusing on their clinical applications as anticancer vaccines. Among the viral vectors discussed are those derived from viruses belonging to the families of the Poxviridae, Adenoviridae, Retroviridae, Togaviridae, Paramyxoviridae, and Rhabdoviridae. We will further shed light on how the combination of viral vector-based vaccination with T-cell supporting strategies will bring this strategy to the next level.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein

          Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S) mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes—A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deciphering the transcriptional network of the DC lineage

            Although, much progress has been made in our understanding of DC ontogeny and function, the transcriptional regulation of DC lineage commitment and functional specialization in vivo is poorly understood. We performed a comprehensive comparative analysis of CD8+, CD103+, CD11b+, and plasmacytoid DC subsets and the recently identified Macrophage DC precursors and Common DC precursors across the entire immune system. Here we characterize candidate transcriptional activators involved in myeloid progenitor commitment to the DC lineage and predicted regulators of DC functional diversity in tissues. We identify a molecular signature that distinguishes tissue DC from macrophages. We also identify a transcriptional program expressed specifically during steady-state tissue DC migration to the draining lymph nodes that may control tolerance to self-tissue antigens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells

              In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity. Using this approach, we show that CD141+ DCs are the only cells in human blood that express the chemokine receptor XCR1 and respond to the specific ligand XCL1 by Ca2+ mobilization and potent chemotaxis. More importantly, we demonstrate that CD141+ DCs excel in cross-presentation of soluble or cell-associated antigen to CD8+ T cells when directly compared with CD1c+ DCs, CD16+ DCs, and pDCs from the same donors. Both in their functional XCR1 expression and their effective processing and presentation of exogenous antigen in the context of major histocompatibility complex class I, human CD141+ DCs correspond to mouse CD8+ DCs, a subset known for superior antigen cross-presentation in vivo. These data define CD141+ DCs as professional antigen cross-presenting DCs in the human.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                11 September 2018
                2018
                : 9
                : 2052
                Affiliations
                Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel , Jette, Belgium
                Author notes

                Edited by: Sandra Tuyaerts, KU Leuven, Belgium

                Reviewed by: Kaïdre Bendjama, Transgene, France; John Counsell, University College London, United Kingdom; Kenneth Lundstrom, Pan Therapeutics, Switzerland

                *Correspondence: Karine Breckpot karine.breckpot@ 123456vub.be

                This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2018.02052
                6141723
                30254636
                f5bf5a42-e242-4a47-bc09-1b1bb69e4e0a
                Copyright © 2018 Goyvaerts and Breckpot.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 June 2018
                : 20 August 2018
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 189, Pages: 18, Words: 16011
                Categories
                Immunology
                Review

                Immunology
                viral vaccine,dendritic cell,t cell,cancer,immunotherapy,preclinical and clinical
                Immunology
                viral vaccine, dendritic cell, t cell, cancer, immunotherapy, preclinical and clinical

                Comments

                Comment on this article