12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein-Protein Interaction Analysis through Network Topology (Oral Cancer)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oral cancer is a complex disorder. Its creation and spreading are due to the interaction of several proteins and genes in different biological thoroughfares. To study biological pathways, many high-yield methods have been used. Efforts to merge several data found at separate levels related to biological thoroughfares and interlinkage networks remain elusive. In our research work, we have proposed a technique known as protein-protein interaction network for analysis and exploring the genes involved in oral cancer disorders. The previous studies have not fully analyzed the proteins or genes involved in oral cancer. Our proposed technique is fully interactive and analyzes the data of oral cancer disorder more accurately and efficiently. The methods used here enabled us to observe the wide network consists of one mighty network comprising of 208 nodes 1572 edges which connect these nodes and various detached small networks. In our study, TP53 is a gene that occupied an important position in the network. TP53 has a 113-degree value and 0.03881821 BC value, indicating that TP53 is centrally localized in the network and is a significant bottleneck protein in the oral cancer protein-protein interaction network. These findings suggested that the pathogenesis of oral cancer variation was organized by means of an integrated PPI network, which is centered on TP53. Furthermore, our identification shows that TP53 is the key role-playing protein in the oral cancer network, and its significance in the cellular networks in the body is determined as well. As TP53 (tumor protein 53) is a vital player in the cell division process, the cells may not grow or divide disorderly; it fulfills the function of at least one of the gene groups in oral cancer. However, the latter progression in the area is any measure; the intention of developing these networks is to transfigure sketch of core disease development, prognosis, and treatment.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

            Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oral cavity and oropharyngeal squamous cell carcinoma--an update.

              Oral cavity squamous cell carcinoma (OC-SCC) is the most common malignancy of the head and neck (excluding nonmelanoma skin cancer). Recent trends have shown a dramatic rise in the incidence of oropharyngeal squamous cell carcinoma (OP-SCC), with a marked increase in lesions related to human papillomavirus infection. This update presents the latest evidence regarding OC-SCC and OP-SCC. In particular, the authors compare and contrast tumors at these two sites with respect to epidemiology, etiopathogenesis, clinicopathologic presentation, clinical assessment, imaging, management, and prognosis. It is important for clinicians to be aware of differences between OC-SCC and OP-SCC so that appropriate patient education and multidisciplinary care can be provided to optimize outcomes.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Healthc Eng
                J Healthc Eng
                JHE
                Journal of Healthcare Engineering
                Hindawi
                2040-2295
                2040-2309
                2021
                16 January 2021
                : 2021
                : 6623904
                Affiliations
                1Department of Computer and Software Technology, University of Swat, Mingora, KPK, Pakistan
                2Department of Computer Science, Al Jouf University, Sakaka, Aljouf, Saudi Arabia
                3Department of CS & IT, University of Malakand, Chakdara, KPK, Pakistan
                Author notes

                Academic Editor: Shaukat Ali

                Author information
                https://orcid.org/0000-0001-6823-5592
                Article
                10.1155/2021/6623904
                7826244
                33510888
                f5c8809a-f12a-4dce-a1ad-f738351202fc
                Copyright © 2021 Fazal Wahab Khattak et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 November 2020
                : 21 December 2020
                : 23 December 2020
                Categories
                Research Article

                Comments

                Comment on this article