408
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS), a type III polyketide synthase (PKS). Stilbene synthases are closely related to chalcone synthases (CHS), the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species.

          Results

          In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection) and abiotic (wounding and UV-C exposure) stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be diametrically opposed suggesting that flow of carbon between these two competing metabolic pathways is tightly regulated at the transcriptional level.

          Conclusions

          This study represents an overview of the expression pattern of each member of the STS gene family in grapevine under both constitutive and stress-induced conditions. The results strongly indicate the existence of a transcriptional subfunctionalization amongst VvSTSs and provide the foundation for further functional investigations about the role and evolution of this large gene family. Moreover, it represents the first study to clearly show the differential regulation of VvCHS and VvSTS genes, suggesting the involvement of transcription factors (TFs) in both the activation and repression of these genes.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.

          The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ProtTest: selection of best-fit models of protein evolution.

            Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Sorghum bicolor genome and the diversification of grasses.

              Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
                Bookmark

                Author and article information

                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central
                1471-2229
                2012
                3 August 2012
                : 12
                : 130
                Affiliations
                [1 ]Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Agripolis, viale dell’Università 16, 35020, Legnaro, Padova, Italy
                [2 ]Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, Università di Padova, Agripolis, viale dell’Università 16, 35020, Legnaro, Padova, Italy
                [3 ]CSIRO Plant Industry, PO Box 350, Glen Osmond, SA, 5064, Australia
                [4 ]Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada Le Grazie 15, 37134, Verona, Italy
                Article
                1471-2229-12-130
                10.1186/1471-2229-12-130
                3433347
                22863370
                f73659dc-3f67-4f3b-b5b7-cf378d159836
                Copyright ©2012 Vannozzi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 March 2012
                : 3 July 2012
                Categories
                Research Article

                Plant science & Botany
                grapevine,abiotic stress,downy mildew,chalcone synthase,stilbene synthase
                Plant science & Botany
                grapevine, abiotic stress, downy mildew, chalcone synthase, stilbene synthase

                Comments

                Comment on this article