25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The cytotoxicity of coxsackievirus B3 is associated with a blockage of autophagic flux mediated by reduced syntaxin 17 expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coxsackievirus B3 (CVB3) is an important human pathogen linked to cardiac arrhythmias and acute heart failure. CVB3 infection has been reported to induce the formation of autophagosomes that support the viral replication in host cells. Interestingly, our study shows that the accumulation of autophagosomes during CVB3 infection is caused by a blockage of autophagosome–lysosome fusion rather than the induction of autophagosome biogenesis. Moreover, CVB3 decreases the transcription and translation of syntaxin 17 (STX17), a SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein involved in autophagosome–lysosome fusion. Overexpression of STX17 restored the autophagic flux, alleviated the virus-induced lysosomal dysfunction, and decreased the apoptosis induced by CVB3 infection in HeLa cells. Taken together, our results suggest that CVB3 infection impairs the autophagic flux by blocking autophagosome–lysosome fusion. These findings thus point to potential new therapeutic strategies targeting STX17 or autophagosome–lysosome fusion for treating CVB3-associated diseases.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

          Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modulation of intracellular ROS levels by TIGAR controls autophagy

            The p53-inducible TIGAR protein functions as a fructose-2,6-bisphosphatase, promoting the pentose phosphate pathway and helping to lower intracellular reactive oxygen species (ROS). ROS functions in the regulation of many cellular responses, including autophagy—a response to stress conditions such as nutrient starvation and metabolic stress. In this study, we show that TIGAR can modulate ROS in response to nutrient starvation or metabolic stress, and functions to inhibit autophagy. The ability of TIGAR to limit autophagy correlates strongly with the suppression of ROS, with no clear effects on the mTOR pathway, and is p53 independent. The induction of autophagy in response to loss of TIGAR can function to moderate apoptotic response by restraining ROS levels. These results reveal a complex interplay in the regulation of ROS, autophagy and apoptosis in response to TIGAR expression, and shows that proteins similar to TIGAR that regulate glycolysis can have a profound effect on the autophagic response through ROS regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate and Adaptive Immunity through Autophagy

              The two main proteolytic machineries of eukaryotic cells, lysosomes and proteasomes, receive substrates by different routes. Polyubiquitination targets proteins for proteasomal degradation, whereas autophagy delivers intracellular material for lysosomal hydrolysis. The importance of autophagy for cell survival has long been appreciated, but more recently, its essential role in both innate and adaptive immunity has been characterized. Autophagy is now recognized to restrict viral infections and replication of intracellular bacteria and parasites. Additionally, this pathway delivers cytoplasmic antigens for MHC class II presentation to the adaptive immune system, which then in turn is able to regulate autophagy. At the same time, autophagy plays a role in the survival and the cell death of T cells. Thus, the immune system utilizes autophagic degradation of cytoplasmic material, to both restrict intracellular pathogens and regulate adaptive immunity.
                Bookmark

                Author and article information

                Contributors
                Huzx1@163.com
                yangzuocheng2017@163.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                14 February 2018
                14 February 2018
                February 2018
                : 9
                : 2
                : 242
                Affiliations
                [1 ]ISNI 0000 0001 0379 7164, GRID grid.216417.7, Department of Pediatrics, The Third Xiangya Hospital, , Central South University, ; 410013 Changsha, China
                [2 ]ISNI 0000 0001 0379 7164, GRID grid.216417.7, Department of Medicine, The Third Xiangya Hospital, , Central South University, ; 410013 Changsha, China
                [3 ]ISNI 0000 0004 1760 6682, GRID grid.410570.7, Department of Pediatrics, Daping Hospital and Field Surgery Institute, , Third Military Medical University, ; 400042 Chongqing, China
                Article
                271
                10.1038/s41419-018-0271-0
                5833838
                29445155
                f7927e19-2124-4f77-a582-e963d64f2491
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 June 2017
                : 8 December 2017
                : 22 December 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article