17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human genome contains multiple layers of information that extend beyond the genetic sequence. In fact, identical genetics do not necessarily yield identical phenotypes as evident for the case of two different cell types in the human body. The great variation in structure and function displayed by cells with identical genetic background is attributed to additional genomic information content. This includes large-scale genetic aberrations, as well as diverse epigenetic patterns that are crucial for regulating specific cell functions. These genetic and epigenetic patterns operate in concert in order to maintain specific cellular functions in health and disease. Single-molecule optical genome mapping is a high-throughput genome analysis method that is based on imaging long chromosomal fragments stretched in nanochannel arrays. The access to long DNA molecules coupled with fluorescent tagging of various genomic information presents a unique opportunity to study genetic and epigenetic patterns in the genome at a single-molecule level over large genomic distances. Optical mapping entwines synergistically chemical, physical, and computational advancements, to uncover invaluable biological insights, inaccessible by sequencing technologies. Here we describe the method’s basic principles of operation, and review the various available mechanisms to fluorescently tag genomic information. We present some of the recent biological and clinical impact enabled by optical mapping and present recent approaches for increasing the method’s resolution and accuracy. Finally, we discuss how multiple layers of genomic information may be mapped simultaneously on the same DNA molecule, thus paving the way for characterizing multiple genomic observables on individual DNA molecules.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).

          We have developed a high-resolution fluorescence microscopy method based on high-accuracy localization of photoswitchable fluorophores. In each imaging cycle, only a fraction of the fluorophores were turned on, allowing their positions to be determined with nanometer accuracy. The fluorophore positions obtained from a series of imaging cycles were used to reconstruct the overall image. We demonstrated an imaging resolution of 20 nm. This technique can, in principle, reach molecular-scale resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging intracellular fluorescent proteins at nanometer resolution.

            We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to approximately 2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method--termed photoactivated localization microscopy--to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome

              The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions 15 megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads.
                Bookmark

                Author and article information

                Contributors
                Journal
                Essays Biochem
                Essays Biochem
                ebc
                Essays in Biochemistry
                Portland Press Ltd.
                0071-1365
                1744-1358
                April 2021
                16 April 2021
                : 65
                : 1 , Biochemistry: one molecule at a time
                : 51-66
                Affiliations
                Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
                Author notes
                Correspondence: Jonathan Jeffet ( jonath7@ 123456tauex.tau.ac.il ) or Yuval Ebenstein ( uv@ 123456tauex.tau.ac.il )
                [*]

                These authors contributed equally to this work.

                Author information
                http://orcid.org/0000-0002-8228-2173
                Article
                EBC20200021
                10.1042/EBC20200021
                8056043
                33739394
                f7f027b5-88e0-4a86-956c-d0c50e01117c
                © 2021 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). Open access for this article was enabled by the participation of Tel Aviv University in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with MALMAD.

                History
                : 27 January 2021
                : 24 February 2021
                : 26 February 2021
                Page count
                Pages: 16
                Categories
                Biotechnology
                DNA, Chromosomes & Chromosomal Structure
                Epigenetics
                Genomics
                Biophysics
                Review Articles

                epigenetics,genetics,nanotechnology,optical mapping,single molecule,super-resolution

                Comments

                Comment on this article