39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Baicalein, a flavonoid extracted from the roots of Scutellaria baicalensis Georgi., has various pharmacological effects due to its high antioxidant activity. However, no study has yet been conducted on the protective efficacy of baicalein against oxidative stress in Schwann cells. In this study, we evaluated the protective effect of baicalein on DNA damage and apoptosis induced by hydrogen peroxide (H 2O 2) in HEI193 Schwann cells. For this purpose, HEI193 cells exposed to H 2O 2 in the presence or absence of baicalein were applied to cell viability assay, immunoblotting, Nrf2-specific small interfering RNA (siRNA) transfection, comet assay, and flow cytometry analyses. Our results showed that baicalein effectively inhibited H 2O 2-induced cytotoxicity and DNA damage associated with the inhibition of reactive oxygen species (ROS) accumulation. Baicalein also weakened H 2O 2-induced mitochondrial dysfunction, increased the Bax/Bcl-2 ratio, activated caspase-9 and -3, and degraded poly(ADP-ribose) polymerase. In addition, baicalein increased not only the expression but also the phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and promoted the expression of heme oxygenase-1 (HO-1), a critical target enzyme of Nrf2, although the expression of kelch-like ECH-associated protein-1 was decreased. However, the inhibition of Nrf2 expression by transfection with Nrf2-siRNA transfection abolished the expression of HO-1 and antioxidant potential of baicalein. These results demonstrate that baicalein attenuated H 2O 2-induced apoptosis through the conservation of mitochondrial function while eliminating ROS in HEI193 Schwann cells, and the antioxidant efficacy of baicalein implies at least a Nrf2/HO-1 signaling pathway-dependent mechanism. Therefore, it is suggested that baicalein may have a beneficial effect on the prevention and treatment of peripheral neuropathy induced by oxidative stress.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin.

            Traditional Chinese medicines have been recently recognized as a new source of anticancer drugs and new chemotherapy adjuvant to enhance the efficacy of chemotherapy and to ameliorate the side effects of cancer chemotherapies however their healing mechanisms are still largely unknown. Scutellaria baicalensis is one of the most popular and multi-purpose herb used in China traditionally for treatment of inflammation, hypertension, cardiovascular diseases, and bacterial and viral infections. Accumulating evidence demonstrate that Scutellaria also possesses potent anticancer activities. The bioactive components of Scutellaria have been confirmed to be flavones. The major constituents of Scutellaria baicalensis are Wogonin, Baicalein and Baicalin. These phytochemicals are not only cytostatic but also cytotoxic to various human tumor cell lines in vitro and inhibit tumor growth in vivo. Most importantly, they show almost no or minor toxicity to normal epithelial and normal peripheral blood and myeloid cells. The antitumor functions of these flavones are largely due to their abilities to scavenge oxidative radicals, to attenuate NF-kappaB activity, to inhibit several genes important for regulation of the cell cycle, to suppress COX-2 gene expression and to prevent viral infections. The tumor-selectivity of Wogonin has recently been demonstrated to be due to its ability to differentially modulate the oxidation-reduction status of malignant vs. normal lymphocytic cells and to preferentially induce phospholipase C gamma 1, a key enzyme involved in Ca(2+) signaling, through H(2)O(2) signaling in malignant lymphocytes. This review is aimed to summarize the research results obtained since the last 20 years and to highlight the recently discovered molecular mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Antioxidants and Natural Products in Inflammation

              Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2019
                1 January 2019
                : 16
                : 1
                : 145-155
                Affiliations
                [1 ]Department of Acupuncture and Moxibution, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
                [2 ]Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
                [3 ]Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
                [4 ]Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
                [5 ]Department of Anatomy and Cell Biology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
                [6 ]Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dongeui University, Busan 47340, Republic of Korea
                [7 ]Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
                Author notes
                ✉ Corresponding authors: Hwan Tae Park, Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; Tel.: 82-51-240-2636; Fax: 82-51-247-3318; E-mail address: phwantae@ 123456dau.ac.kr or Yung Hyun Choi, Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea; Tel.: 82-51-850-7413; Fax: 82-51-853-4036; E-mail address: choiyh@ 123456deu.ac.kr

                #These authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv16p0145
                10.7150/ijms.27005
                6332480
                30662338
                f9e7db42-6908-4364-8325-a0ee17d1be7e
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 2 May 2018
                : 30 June 2018
                Categories
                Research Paper

                Medicine
                baicalein,schwann cells,oxidative stress,dna damage,apoptosis,nrf2/ho-1
                Medicine
                baicalein, schwann cells, oxidative stress, dna damage, apoptosis, nrf2/ho-1

                Comments

                Comment on this article