21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Evaluation of the in vivo Safety of Nonporous Silica Nanoparticles: Ocular Topical Administration versus Oral Administration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonporous silica nanoparticles (SiNPs) have potential as promising carriers for ophthalmic drugs. However, the in vivo safety of ocular topical SiNPs remains unclear. This study investigated the in vivo safety of oral and ocular topical applications of 100 nm-sized SiNPs in Sprague-Dawley rats. The rats were divided into the following four groups: low-dose oral administration (total 100 mg/kg of SiNPs mixed with food for one week), high-dose oral administration (total 1000 mg/kg of SiNPs mixed with food for one week), ocular topical administration (10 mg/ml concentration, one drop, applied to the right eyes four times a day for one month), or a negative control (no SiNP treatment). The rats were observed for 12 weeks to investigate any signs of general or ocular toxicity. During the observation period, no differences were observed in the body weights, food and water intakes, behaviors and abnormal symptoms of the four groups. No animal deaths occurred. After 12 weeks, hematologic, blood biochemical parameters and ophthalmic examinations revealed no abnormal findings in any of the animals. The lack of toxicity of the SiNPs was further verified in autopsy findings of brain, liver, lung, spleen, heart, kidneys, intestine, eyeballs, and ovaries or testes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The nanosilica hazard: another variable entity

          Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial growth factors and angiogenesis in eye disease.

            The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights into the cell biology of VEGFs and vascular cells in angiogenesis and vascular leakage in general, and to provide the rationale and possible pitfalls of inhibition of VEGFs as a therapy for ocular disease. From the literature it is clear that overexpression of VEGFs and their receptors VEGFR-1, VEGFR-2 and VEGFR-3 is causing increased microvascular permeability and angiogenesis in eye conditions such as DR and AMD. When we focus on the VEGF receptors, recent findings suggest a role of VEGFR-1 as a functional receptor for placenta growth factor (PlGF) and vascular endothelial growth factor-A (VEGF)-A in pericytes and vascular smooth muscle cells in vivo rather than in endothelial cells, and strongly suggest involvement of pericytes in early phases of angiogenesis. In addition, the evidence pointing to distinct functions of VEGFs in physiology in and outside the vasculature is reviewed. The cellular distribution of VEGFR-1, VEGFR-2 and VEGFR-3 suggests various specific functions of the VEGF family in normal retina, both in the retinal vasculature and in neuronal elements. Furthermore, we focus on recent findings that VEGFs secreted by epithelia, including the retinal pigment epithelium (RPE), are likely to mediate paracrine vascular survival signals for adjacent endothelia. In the choroid, derailment of this paracrine relation and overexpression of VEGF-A by RPE may explain the pathogenesis of subretinal neovascularisation in AMD. On the other hand, this paracrine relation and other physiological functions of VEGFs may be endangered by therapeutic VEGF inhibition, as is currently used in several clinical trials in DR and AMD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells.

              The effect that monodisperse amorphous spherical silica particles of different sizes have on the viability of endothelial cells (EAHY926 cell line) is investigated. The results indicate that exposure to silica nanoparticles causes cytotoxic damage (as indicated by lactate dehydrogenase (LDH) release) and a decrease in cell survival (as determined by the tetrazolium reduction, MTT, assay) in the EAHY926 cell line in a dose-related manner. Concentrations leading to a 50% reduction in cell viability (TC(50)) for the smallest particles tested (14-, 15-, and 16-nm diameter) ranging from 33 to 47 microg cm(-2) of cell culture differ significantly from values assessed for the bigger nanoparticles: 89 and 254 microg cm(-2) (diameter of 19 and 60 nm, respectively). Two fine silica particles with diameters of 104 and 335 nm show very low cytotoxic response compared to nanometer-sized particles with TC(50) values of 1095 and 1087 microg cm(-2), respectively. The smaller particles also appear to affect the exposed cells faster with cell death (by necrosis) being observed within just a few hours. The surface area of the tested particles is an important parameter in determining the toxicity of monodisperse amorphous silica nanoparticles.
                Bookmark

                Author and article information

                Contributors
                oph0112@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 August 2017
                15 August 2017
                2017
                : 7
                : 8238
                Affiliations
                [1 ]ISNI 0000 0004 1792 3864, GRID grid.470090.a, Department of Ophthalmology, , Dongguk University, Ilsan Hospital, ; Goyang, South Korea
                [2 ]ISNI 0000 0001 0789 9563, GRID grid.254224.7, School of Chemical Engineering and Material Science, , Chung-Ang University, ; Seoul, South Korea
                [3 ]Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, South Korea
                Author information
                http://orcid.org/0000-0002-8662-6279
                Article
                8843
                10.1038/s41598-017-08843-9
                5557988
                28811672
                fa07e963-a44b-4b0c-8d5f-ac9a8d53f6a2
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 May 2017
                : 13 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article