Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impaired FGF10 Signaling and Epithelial Development in Experimental Lung Hypoplasia With Esophageal Atresia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with esophageal atresia (EA) and tracheoesophageal fistula (TEF) often experience persistent respiratory tract disease. In experimental models, doxorubicin-induced developmental lung abnormalities may result from downregulation of branching morphogenesis factor fibroblast growth factor (Fgf10). This study investigated the temporospatial expression of Fgf10 pathway components and lung epithelial factors in an doxorubicin-induced EA-TEF model by quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting. Epigenetic regulation of gene expression by histone deacetylation was also investigated. Bone morphogenetic protein (Bmp) 4 and Cathepsin H (Ctsh), downstream targets of Fgf10, were significantly downregulated in the EA-TEF model during the saccular stage, consistent with Fgf10 expression. The developmental expression pattern of P2x7 receptor (ATI-cell marker), Sftpa, and Sftpb in lung epithelial cells was not affected. Sftpc (ATII-cell Marker) and Scgb1a1 (Clara cell marker) were significantly downregulated at the canalicular stage. Meanwhile, histone deacetylase (Hdac) 1 was upregulated and subsequently decreased acetylation of histone H3 Lys56 in the EA-TEF model, which returned to a normal level at the saccular stage. In conclusion, disturbed molecular signaling involving Fgf10/Ctsh was associated with impaired airway branching and epithelial cell development in lung morphogenesis, as evidenced by downregulated Sftpc and Scgb1a1 protein expression. The influence of Hdac1 activity on gene and protein expression in lung epithelial cells deserves further study.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Fgf10 is essential for limb and lung formation.

          The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10-/- embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decreased histone deacetylase activity in chronic obstructive pulmonary disease.

            Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation that is greater in patients with advanced disease. We asked whether there is a link between the severity of disease and the reduction in histone deacetylase (HDAC) activity in the peripheral lung tissue of patients with COPD of varying severity. HDAC is a key molecule in the repression of production of proinflammatory cytokines in alveolar macrophages. HDAC activity and histone acetyltransferase (HAT) activity were determined in nuclear extracts of specimens of surgically resected lung tissue from nonsmokers without COPD, patients with COPD of varying severity, and patients with pneumonia or cystic fibrosis. Alveolar macrophages from nonsmokers, smokers, and patients with COPD and bronchial-biopsy specimens from nonsmokers, healthy smokers, patients with COPD, and those with mild asthma were also examined. Total RNA extracted from lung tissue and macrophages was used for quantitative reverse-transcriptase-polymerase-chain-reaction assay of HDAC1 through HDAC8 and interleukin-8. Expression of HDAC2 protein was quantified with the use of Western blotting. Histone-4 acetylation at the interleukin-8 promoter was evaluated with the use of a chromatin immunoprecipitation assay. Specimens of lung tissue obtained from patients with increasing clinical stages of COPD had graded reductions in HDAC activity and increases in interleukin-8 messenger RNA (mRNA) and histone-4 acetylation at the interleukin-8 promoter. The mRNA expression of HDAC2, HDAC5, and HDAC8 and expression of the HDAC2 protein were also lower in patients with increasing severity of disease. HDAC activity was decreased in patients with COPD, as compared with normal subjects, in both the macrophages and biopsy specimens, with no changes in HAT activity, whereas HAT activity was increased in biopsy specimens obtained from patients with asthma. Neither HAT activity nor HDAC activity was changed in lung tissue from patients with cystic fibrosis or pneumonia. Patients with COPD have a progressive reduction in total HDAC activity that reflects the severity of the disease. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung.

              During mouse lung morphogenesis, the distal mesenchyme regulates the growth and branching of adjacent endoderm. We report here that fibroblast growth factor 10 (Fgf10) is expressed dynamically in the mesenchyme adjacent to the distal buds from the earliest stages of lung development. The temporal and spatial pattern of gene expression suggests that Fgf10 plays a role in directional outgrowth and possibly induction of epithelial buds, and that positive and negative regulators of Fgf10 are produced by the endoderm. In transgenic lungs overexpressing Shh in the endoderm, Fgf10 transcription is reduced, suggesting that high levels of SHH downregulate Fgf10. Addition of FGF10 to embryonic day 11.5 lung tissue (endoderm plus mesenchyme) in Matrigel or collagen gel culture elicits a cyst-like expansion of the endoderm after 24 hours. In Matrigel, but not collagen, this is followed by extensive budding after 48-60 hours. This response involves an increase in the rate of endodermal cell proliferation. The activity of FGF1, FGF7 and FGF10 was also tested directly on isolated endoderm in Matrigel culture. Under these conditions, FGF1 elicits immediate endodermal budding, while FGF7 and FGF10 initially induce expansion of the endoderm. However, within 24 hours, samples treated with FGF10 give rise to multiple buds, while FGF7-treated endoderm never progresses to bud formation, at all concentrations of factor tested. Although exogenous FGF1, FGF7 and FGF10 have overlapping activities in vitro, their in vivo expression patterns are quite distinct in relation to early branching events. We conclude that, during early lung development, localized sources of FGF10 in the mesoderm regulate endoderm proliferation and bud outgrowth.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                20 April 2018
                2018
                : 6
                : 109
                Affiliations
                [1] 1Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, China
                [2] 2Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University , Benxi, China
                [3] 3Central Laboratory, Shengjing Hospital of China Medical University , Shenyang, China
                Author notes

                Edited by: Arjan Te Pas, Leiden University, Netherlands

                Reviewed by: Saverio Bellusci, Justus Liebig Universität Gießen, Germany; Matthew K. Lee, University of Southern California, United States

                *Correspondence: Xiaomei Liu liuxm1@ 123456sj-hospital.org

                This article was submitted to Neonatology, a section of the journal Frontiers in Pediatrics

                Article
                10.3389/fped.2018.00109
                5921531
                fbfab6bd-f9b8-42c6-9a8c-3cd98375da81
                Copyright © 2018 Wang, Liu, Gao and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 December 2017
                : 03 April 2018
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 41, Pages: 11, Words: 5417
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81571449
                Categories
                Pediatrics
                Original Research

                esophageal atresia,lung,fgf10,ctsh,epigenetic
                esophageal atresia, lung, fgf10, ctsh, epigenetic

                Comments

                Comment on this article