18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Daily Lifestyle and Inflammatory Skin Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Throughout life, it is necessary to adapt to the Earth’s environment in order to survive. A typical example of this is that the daily Earth cycle is different from the circadian rhythm in human beings; however, the ability to adapt to the Earth cycle has contributed to the development of human evolution. In addition, humans can consume and digest Earth-derived foods and use luxury materials for nutrition and enrichment of their lives, as an adaptation to the Earth’s environment. Recent studies have shown that daily lifestyles are closely related to human health; however, less attention has been paid to the fact that obesity due to excessive energy intake, smoking, and alcohol consumption contributes to the development of inflammatory skin diseases. Gluten or wheat protein, smoking and alcohol, sleep disturbance, and obesity drive the helper T (Th)1/Th2/Th17 immune response, whereas dietary fiber and omega-3 fatty acids negatively regulate inflammatory cytokine production. In this review, we have focused on daily lifestyles and the mechanisms involved in the pathogenesis of inflammatory skin diseases.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

          Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.

            Atopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atopic dermatitis

              Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, with a lifetime prevalence of up to 20% and substantial effects on quality of life. AD is characterized by intense itch, recurrent eczematous lesions and a fluctuating course. AD has a strong heritability component and is closely related to and commonly co-occurs with other atopic diseases (such as asthma and allergic rhinitis). Several pathophysiological mechanisms contribute to AD aetiology and clinical manifestations. Impairment of epidermal barrier function, for example, owing to deficiency in the structural protein filaggrin, can promote inflammation and T cell infiltration. The immune response in AD is skewed towards T helper 2 cell-mediated pathways and can in turn favour epidermal barrier disruption. Other contributing factors to AD onset include dysbiosis of the skin microbiota (in particular overgrowth of Staphylococcus aureus), systemic immune responses (including immunoglobulin E (IgE)-mediated sensitization) and neuroinflammation, which is involved in itch. Current treatments for AD include topical moisturizers and anti-inflammatory agents (such as corticosteroids, calcineurin inhibitors and cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4) inhibitors), phototherapy and systemic immunosuppressants. Translational research has fostered the development of targeted small molecules and biologic therapies, especially for moderate-to-severe disease.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                14 May 2021
                May 2021
                : 22
                : 10
                : 5204
                Affiliations
                Department of Dermatology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-Ku, Kitakyushu 807-8555, Japan; natsuko-saito@ 123456med.uoeh-u.ac.jp (N.S.-S.); e-mashima@ 123456med.uoeh-u.ac.jp (E.M.); motonaka@ 123456med.uoeh-u.ac.jp (M.N.)
                Author notes
                Article
                ijms-22-05204
                10.3390/ijms22105204
                8156947
                34069063
                fc171b82-690e-4093-abbd-7976a992ce76
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 24 April 2021
                : 12 May 2021
                Categories
                Review

                Molecular biology
                daily lifestyle,psoriasis,atopic dermatitis,contact dermatitis,skin inflammation
                Molecular biology
                daily lifestyle, psoriasis, atopic dermatitis, contact dermatitis, skin inflammation

                Comments

                Comment on this article