25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Conspectus

          Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin–(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L –1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo.

          With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of “endowing organometallic chemistry with a genetic memory.” With this goal in mind, we have identified E. coli’s periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype–genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C–H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.

          The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.

            Asymmetric catalysis plays a key role in modern synthetic organic chemistry, with synthetic catalysts and enzymes being the two available options. During the latter part of the last century the use of enzymes in organic chemistry and biotechnology experienced a period of rapid growth. However, these biocatalysts have traditionally suffered from several limitations, including in many cases limited substrate scope, poor enantioselectivity, insufficient stability, and sometimes product inhibition. During the last 15 years, the genetic technique of directed evolution has been developed to such an extent that all of these long-standing problems can be addressed and solved. It is based on repeated cycles of gene mutagenesis, expression, and screening (or selection). This Review focuses on the directed evolution of enantioselective enzymes, which constitutes a fundamentally new approach to asymmetric catalysis. Emphasis is placed on the development of methods to make laboratory evolution faster and more efficient, thus providing chemists and biotechnologists with a rich and non-ending source of robust and selective catalysts for a variety of useful applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ferritin: a versatile building block for bionanotechnology.

                Bookmark

                Author and article information

                Journal
                Acc Chem Res
                Acc. Chem. Res
                ar
                achre4
                Accounts of Chemical Research
                American Chemical Society
                0001-4842
                1520-4898
                08 February 2019
                19 March 2019
                : 52
                : 3
                : 585-595
                Affiliations
                [1]Department of Chemistry, University of Basel , BPR1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
                Author notes
                Article
                10.1021/acs.accounts.8b00618
                6427477
                30735358
                fc53788f-69d2-4985-ad55-395bbe3eb4e2
                Copyright © 2019 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 05 December 2018
                Categories
                Article
                Custom metadata
                ar8b00618
                ar-2018-00618f

                General chemistry
                General chemistry

                Comments

                Comment on this article