29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia

      1 , 1 , 2 , 2 , 3
      FEMS Microbiology Reviews
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.

          Related collections

          Most cited references482

          • Record: found
          • Abstract: found
          • Article: not found

          Kinesin superfamily motor proteins and intracellular transport.

          Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating the timing of early eukaryotic diversification with multigene molecular clocks.

              Although macroscopic plants, animals, and fungi are the most familiar eukaryotes, the bulk of eukaryotic diversity is microbial. Elucidating the timing of diversification among the more than 70 lineages is key to understanding the evolution of eukaryotes. Here, we use taxon-rich multigene data combined with diverse fossils and a relaxed molecular clock framework to estimate the timing of the last common ancestor of extant eukaryotes and the divergence of major clades. Overall, these analyses suggest that the last common ancestor lived between 1866 and 1679 Ma, consistent with the earliest microfossils interpreted with confidence as eukaryotic. During this interval, the Earth's surface differed markedly from today; for example, the oceans were incompletely ventilated, with ferruginous and, after about 1800 Ma, sulfidic water masses commonly lying beneath moderately oxygenated surface waters. Our time estimates also indicate that the major clades of eukaryotes diverged before 1000 Ma, with most or all probably diverging before 1200 Ma. Fossils, however, suggest that diversity within major extant clades expanded later, beginning about 800 Ma, when the oceans began their transition to a more modern chemical state. In combination, paleontological and molecular approaches indicate that long stems preceded diversification in the major eukaryotic lineages.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                FEMS Microbiology Reviews
                Oxford University Press (OUP)
                0168-6445
                1574-6976
                May 2020
                May 01 2020
                March 09 2020
                May 2020
                May 01 2020
                March 09 2020
                : 44
                : 3
                : 253-304
                Affiliations
                [1 ]Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
                [2 ]Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
                [3 ]Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
                Article
                10.1093/femsre/fuaa006
                32149348
                fed4599f-6aae-4870-a381-80cd7a06414b
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article