58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency

      Journal of Clinical Oncology
      American Society of Clinical Oncology (ASCO)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy.

          To assess the feasibility, safety, and toxicity of autologous tumor lysate-pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every 3 months until tumor progression. Gene expression profiling, immunohistochemistry, FACS, and cytokine bead arrays were performed on patient tumors and peripheral blood mononuclear cells. DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a 1-, 2-, and 3-year survival rate of 91%, 55%, and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared with historic controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3(+) and CD8(+) tumor-infiltrating lymphocytes compared with glioblastomas of other gene expression signatures (P = 0.006). Autologous tumor lysate-pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies. ©2010 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers.

            DNA replication-associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase ɛ or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10(-13)). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (∼600 mutations/cell division), reaching but not exceeding ∼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group.

              To determine whether temozolomide is an active agent in the treatment of children with high-grade astrocytomas and whether survival is influenced by the expression of the O6-methylguanine-methyltransferase gene (MGMT) in these patients. In the Children's Oncology Group study ACNS0126, 107 patients with a diagnosis of anaplastic astrocytoma (AA), glioblastoma multiforme (GBM), or gliosarcoma were enrolled. All patients underwent concomitant chemoradiotherapy with temozolomide, followed by adjuvant chemotherapy with temozolomide. The outcomes were compared with those of children treated in Children's Cancer Group (CCG) study CCG-945. Formalin-fixed, paraffin-embedded tumor tissue was available in 71 cases for immunohistochemical analysis of MGMT expression. Ninety patients were deemed eligible, 31 with AA, 55 with GBM, and 4 with other eligible diagnoses. The 3-year event-free survival (EFS) and overall survival (OS) rates were 11 ± 3% and 22 ± 5%, respectively. There was no evidence that temozolomide given during radiation therapy and as adjuvant therapy resulted in improved EFS compared with that found in CCG-945 (p = 0.98). The 3-year EFS rate for AA was 13 ± 6% in ACNS0126 compared with 22 ± 5.5% in CCG-945 (p = 0.95). The 3-year EFS rate for GBM was 7 ± 4% in ACNS0126 compared with 15 ± 5% in CCG-945 (p = 0.77). The 2-year EFS rate was 17 ± 5% among patients without MGMT overexpression and 5 ± 4% among those with MGMT overexpression (p = 0.045). Temozolomide failed to improve outcome in children with high-grade astrocytomas. MGMT overexpression was adversely associated with survival.
                Bookmark

                Author and article information

                Journal
                10.1200/JCO.2016.66.6552

                Comments

                Comment on this article