105
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emergence of west nile virus lineage 2 in europe: a review on the introduction and spread of a mosquito-borne disease.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          West Nile virus (WNV) is transmitted by mosquitoes and causes fever and encephalitis in humans, equines, and occasionally wild birds. The virus was first isolated in sub-Saharan Africa where it is endemic. WNV lineage 1 has been responsible for repeated disease outbreaks in the countries of the Mediterranean basin over the past 50 years. This lineage was also introduced into North America in 1999 causing widespread human, equine, and avian mortality. WNV lineage 2, the first WNV lineage to be isolated, was believed to be restricted to sub-Saharan Africa causing a relatively mild fever in humans. However, in 2004, an investigation in Hungary of a case of encephalitis in a wild goshawk (Accipiter gentiles) resulted in the isolation of WNV lineage 2. During the summer of 2004, and in subsequent years, the virus appeared to spread locally throughout Hungary and into neighboring Austria. Subsequently, WNV lineage 2 emerged in Greece in 2010 and in Italy in 2011, involving outbreaks on the Italian mainland and Sardinia. Further spread through the Balkan countries is also suspected. Whole genome sequencing has confirmed that the virus responsible for the outbreaks in Greece and Italy was almost identical to that isolated in Hungary. However, unlike the outbreaks in Hungary, the burden of disease in Mediterranean countries has fallen upon the human population with numerous cases of West Nile fever and a relatively higher mortality rate than in previous outbreaks. The emergence of WNV lineage 2 in Europe, its over-wintering and subsequent spread over large distances illustrates the repeated threat of emerging mosquito-borne diseases. This article will review the emergence of WNV lineage 2 in Europe; consider the pathways for virus spread and the public health implications for the continent.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States.

          In late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus.

            Aedes albopictus, commonly known as the Asian tiger mosquito, is currently the most invasive mosquito in the world. It is of medical importance due to its aggressive daytime human-biting behavior and ability to vector many viruses, including dengue, LaCrosse, and West Nile. Invasions into new areas of its potential range are often initiated through the transportation of eggs via the international trade in used tires. We use a genetic algorithm, Genetic Algorithm for Rule Set Production (GARP), to determine the ecological niche of Ae. albopictus and predict a global ecological risk map for the continued spread of the species. We combine this analysis with risk due to importation of tires from infested countries and their proximity to countries that have already been invaded to develop a list of countries most at risk for future introductions and establishments. Methods used here have potential for predicting risks of future invasions of vectors or pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drivers, dynamics, and control of emerging vector-borne zoonotic diseases.

              Emerging vector-borne diseases are an important issue in global health. Many vector-borne pathogens have appeared in new regions in the past two decades, while many endemic diseases have increased in incidence. Although introductions and emergence of endemic pathogens are often considered to be distinct processes, many endemic pathogens are actually spreading at a local scale coincident with habitat change. We draw attention to key differences between dynamics and disease burden that result from increased pathogen transmission after habitat change and after introduction into new regions. Local emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles, whereas pathogen invasion results from anthropogenic trade and travel where and when conditions (eg, hosts, vectors, and climate) are suitable for a pathogen. Once a pathogen is established, ecological factors related to vector characteristics can shape the evolutionary selective pressure and result in increased use of people as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that could be effective in the long term. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Front Public Health
                Frontiers in public health
                Frontiers Media SA
                2296-2565
                2296-2565
                2014
                : 2
                Affiliations
                [1 ] Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK.
                [2 ] London School of Hygiene and Tropical Medicine , London , UK.
                [3 ] Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK ; Department of Clinical Infection, University of Liverpool , Liverpool , UK.
                Article
                10.3389/fpubh.2014.00271
                4258884
                25538937
                3ee5a512-ca9b-45f1-832e-83d5d7a5895e
                History

                Europe,West Nile virus,emergence,encephalitis,lineage
                Europe, West Nile virus, emergence, encephalitis, lineage

                Comments

                Comment on this article