36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Sox10 transcription factor is a central regulator of vertebrate neural crest and nervous system development. Its expression is likely controlled by multiple enhancer elements, among them U3 (alternatively known as MCS4). Here we analyze U3 activity to obtain deeper insights into Sox10 function and expression in the neural crest and its derivatives. U3 activity strongly depends on the presence of Sox10 that regulates its own expression as commonly observed for important developmental regulators. Sox10 bound directly as monomer to at least three sites in U3, whereas a fourth site preferred dimers. Deletion of these sites efficiently reduced U3 activity in transfected cells and transgenic mice. In stimulating the U3 enhancer, Sox10 synergized with many other transcription factors present in neural crest and developing peripheral nervous system including Pax3, FoxD3, AP2α, Krox20 and Sox2. In case of FoxD3, synergism involved Sox10-dependent recruitment to the U3 enhancer, while Sox10 and AP2α each had to bind to the regulatory region. Our study points to the importance of autoregulatory activity and synergistic interactions for maintenance of Sox10 expression and functional activity of Sox10 in the neural crest regulatory network.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The origin and development of glial cells in peripheral nerves.

          During the development of peripheral nerves, neural crest cells generate myelinating and non-myelinating glial cells in a process that parallels gliogenesis from the germinal layers of the CNS. Unlike central gliogenesis, neural crest development involves a protracted embryonic phase devoted to the generation of, first, the Schwann cell precursor and then the immature Schwann cell, a cell whose fate as a myelinating or non-myelinating cell has yet to be determined. Embryonic nerves therefore offer a particular opportunity to analyse the early steps of gliogenesis from transient multipotent stem cells, and to understand how this process is integrated with organogenesis of peripheral nerves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators.

            Members of the SOX family of transcription factors are found throughout the animal kingdom, are characterized by the presence of a DNA-binding HMG domain, and are involved in a diverse range of developmental processes. Previous attempts to group SOX genes and deduce their structural, functional, and evolutionary relationships have relied largely on complete or partial HMG box sequence of a limited number of genes. In this study, we have used complete HMG domain sequence, full-length protein structure, and gene organization data to study the pattern of evolution within the family. For the first time, a substantial number of invertebrate SOX sequences have been included in the analysis. We find support for subdivision of the family into groups A-H, as has been suggested in some previous studies, and for the assignment of two new groups, I and J. For vertebrate genes, it appears that relatedness as suggested by HMG domain sequence is congruent with relatedness as indicated by overall structure of the full-length protein and intron-exon structure of the genes. Most of the SOX groups identified in vertebrates were represented by a single SOX sequence in each invertebrate species studied. We have named anonymous sequences and, where appropriate, have suggested systematic names for some previously identified sequences. In addition, we identify an HMG domain signature motif which may be considered representative of the SOX family. Based on our data, we propose a robust phylogeny of SOX genes that reflects their evolutionary history in metazoans. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Krox-20 controls myelination in the peripheral nervous system.

              The molecular mechanisms controlling the process of myelination by Schwann cells remain elusive, despite recent progress in the identification and characterization of genes encoding myelin components (reviewed in ref. 1). We have created a null allele in the mouse Krox-20 gene, which encodes a zinc-finger transcription factor, by in-frame insertion of the Escherichia coli lacZ gene, and have shown that hindbrain segmentation is affected in Krox-20-/- embryos. We demonstrate here that Krox-20 is also activated in Schwann cells before the onset of myelination and that its disruption blocks Schwann cells at an early stage in their differentiation, thus preventing myelination in the peripheral nervous system. In Krox-20-/- mice, Schwann cells wrap their cytoplasmic processes only one and a half turns around the axon, and although they express the early myelin marker, myelin-associated glycoprotein, late myelin gene products are absent, including those for protein zero and myelin basic protein. Therefore Krox-20 is likely to control a set of genes required for completion of myelination in the peripheral nervous system.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2012
                January 2012
                9 September 2011
                9 September 2011
                : 40
                : 1
                : 88-101
                Affiliations
                1Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen and 2Max-Planck-Institut für Neurobiologie, D-82152 Martinsried, Germany
                Author notes
                *To whom correspondence should be addressed. Tel: +49 (0)9131 85 24620; Fax: +49 (0)9131 85 22484; Email: m.wegner@ 123456biochem.uni-erlangen.de
                Article
                gkr734
                10.1093/nar/gkr734
                3245941
                21908409
                00177ee9-35bc-472c-b51a-91a21f58e976
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 August 2011
                : 23 August 2011
                : 24 August 2011
                Page count
                Pages: 14
                Categories
                Gene Regulation, Chromatin and Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article