34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identification of three-dimensional (3D) interactions between regulatory elements across the genome is crucial to unravel the complex regulatory machinery that orchestrates proliferation and differentiation of cells. ChIA-PET is a novel method to identify such interactions, where physical contacts between regions bound by a specific protein are quantified using next-generation sequencing. However, determining the significance of the observed interaction frequencies in such datasets is challenging, and few methods have been proposed. Despite the fact that regions that are close in linear genomic distance have a much higher tendency to interact by chance, no methods to date are capable of taking such dependency into account. Here, we propose a statistical model taking into account the genomic distance relationship, as well as the general propensity of anchors to be involved in contacts overall. Using both real and simulated data, we show that the previously proposed statistical test, based on Fisher's exact test, leads to invalid results when data are dependent on genomic distance. We also evaluate our method on previously validated cell-line specific and constitutive 3D interactions, and show that relevant interactions are significant, while avoiding over-estimating the significance of short nearby interactions.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.

          Physical interactions between genetic elements located throughout the genome play important roles in gene regulation and can be identified with the Chromosome Conformation Capture (3C) methodology. 3C converts physical chromatin interactions into specific ligation products, which are quantified individually by PCR. Here we present a high-throughput 3C approach, 3C-Carbon Copy (5C), that employs microarrays or quantitative DNA sequencing using 454-technology as detection methods. We applied 5C to analyze a 400-kb region containing the human beta-globin locus and a 100-kb conserved gene desert region. We validated 5C by detection of several previously identified looping interactions in the beta-globin locus. We also identified a new looping interaction in K562 cells between the beta-globin Locus Control Region and the gamma-beta-globin intergenic region. Interestingly, this region has been implicated in the control of developmental globin gene switching. 5C should be widely applicable for large-scale mapping of cis- and trans- interaction networks of genomic elements and for the study of higher-order chromosome structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture.

            Hi-C experiments measure the probability of physical proximity between pairs of chromosomal loci on a genomic scale. We report on several systematic biases that substantially affect the Hi-C experimental procedure, including the distance between restriction sites, the GC content of trimmed ligation junctions and sequence uniqueness. To address these biases, we introduce an integrated probabilistic background model and develop algorithms to estimate its parameters and renormalize Hi-C data. Analysis of corrected human lymphoblast contact maps provides genome-wide evidence for interchromosomal aggregation of active chromatin marks, including DNase-hypersensitive sites and transcriptionally active foci. We observe extensive long-range (up to 400 kb) cis interactions at active promoters and derive asymmetric contact profiles next to transcription start sites and CTCF binding sites. Clusters of interacting chromosomal domains suggest physical separation of centromere-proximal and centromere-distal regions. These results provide a computational basis for the inference of chromosomal architectures from Hi-C experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Looping and interaction between hypersensitive sites in the active beta-globin locus.

              Eukaryotic transcription can be regulated over tens or even hundreds of kilobases. We show that such long-range gene regulation in vivo involves spatial interactions between transcriptional elements, with intervening chromatin looping out. The spatial organization of a 200 kb region spanning the murine beta-globin locus was analyzed in expressing erythroid and nonexpressing brain tissue. In brain, the globin cluster adopts a seemingly linear conformation. In erythroid cells the hypersensitive sites of the locus control region (LCR), located 40-60 kb away from the active genes, come in close spatial proximity with these genes. The intervening chromatin with inactive globin genes loops out. Moreover, two distant hypersensitive regions participate in these interactions. We propose that clustering of regulatory elements is key to creating and maintaining active chromatin domains and regulating transcription.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                13 October 2014
                11 August 2014
                11 August 2014
                : 42
                : 18
                : e143
                Affiliations
                [1 ]Institute for Cancer Genetics and Informatics, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway
                [2 ]Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4950, Nydalen, N-0424 Oslo, Norway
                [3 ]Statistics for Innovation, Norwegian Computing Center, N-0314 Oslo, Norway
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +47 22857964; Fax: +47 22852401; Email: jonaspau@ 123456ifi.uio.no
                Article
                10.1093/nar/gku738
                4191384
                25114054
                05235b96-dedf-4731-a533-e51d6f40db74
                © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 01 August 2014
                : 10 July 2014
                : 18 March 2014
                Page count
                Pages: 11
                Categories
                7
                24
                Methods Online
                Custom metadata
                13 October 2014

                Genetics
                Genetics

                Comments

                Comment on this article