27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential cytokine contributions of perivascular haematopoietic stem cell niches

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arterioles and sinusoids of the bone marrow (BM) are accompanied by stromal cells that express nerve/glial antigen 2 (NG2) and leptin receptor (LepR), and constitute specialised niches that regulate quiescence and proliferation of haematopoietic stem cells (HSCs). However, how niche cells differentially regulate HSC functions remains unknown. Here, we show that the effects of cytokines regulating HSC functions are dependent on the producing cell sources. Deletion of chemokine C-X-C motif ligand 12 (Cxcl12) or stem cell factor (Scf) from all perivascular cells marked by Nestin-GFP dramatically depleted BM HSCs. Selective Cxcl12 deletion from arteriolar NG2 + cells, but not from sinusoidal LepR + cells, caused HSC reductions and altered HSC localisation in BM. By contrast, deletion of Scf in LepR + cells, but not NG2 + cells, led to reductions in BM HSC numbers. These results uncover distinct contributions of cytokines derived from perivascular cells in separate vascular niches to HSC maintenance.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct routes of lineage development reshape the human blood hierarchy across ontogeny.

          In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct bone marrow blood vessels differentially regulate hematopoiesis

            Bone marrow (BM) endothelial cells (BMECs) form a network of blood vessels (BVs) which regulate both leukocyte trafficking and hematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles and if these events occur at the same vascular site. We found that BM stem cell maintenance and leukocyte trafficking are regulated by distinct BV types with different permeability properties. Less permeable arterial BVs maintain HSCs in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the BM. A functional consequence of high BVs permeability is that exposure to blood plasma increases BM HSPC ROS levels, augmenting their migration capacity while compromising their long term repopulation and survival potential. These findings may have relevance for clinical hematopoietic stem cell transplantation and mobilization protocols.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal

              Hematopoietic stem cells (HSCs) reside in a perivascular niche but the location remains controversial 1 . HSCs are rare and few can be found in thin tissue sections 2,3 or upon live imaging 4 , making it difficult to comprehensively localize dividing and non-dividing HSCs. We discovered that α-catulinGFP/+ was expressed by only 0.02% of bone marrow hematopoietic cells, including virtually all HSCs. One in 3.5 α-catulin-GFP+c-kit+ cells gave long-term multilineage reconstitution of irradiated mice, indicating that α-catulin-GFP+c-kit+ cells contain HSCs with a purity comparable to the best markers available. We were able to optically clear the bone marrow to perform deep confocal imaging, making it possible to image thousands of α-catulin-GFP+c-kit+ cells and to digitally reconstruct large segments of bone marrow. The distribution of α-catulin-GFP+c-kit+ cells indicated that HSCs were more common in central marrow than near bone surfaces and in the diaphysis relative to the metaphysis. Nearly all HSCs contacted Leptin Receptor+ and Cxcl12high niche cells. Approximately 85% of HSCs were within 10μm of a sinusoidal blood vessel. Most HSCs were distant from arterioles, transition zone vessels, and bone surfaces. This was true of Ki-67+ dividing HSCs and Ki-67− non-dividing HSCs. Dividing and non-dividing HSCs thus reside mainly in perisinusoidal niches with Leptin Receptor+Cxcl12high cells throughout the bone marrow.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                24 January 2017
                20 February 2017
                March 2017
                20 August 2017
                : 19
                : 3
                : 214-223
                Affiliations
                [1 ]Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
                [2 ]Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
                [3 ]Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
                [4 ]Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
                Author notes
                Correspondence should be addressed to P.S.F. : paul.frenette@ 123456einstein.yu.edu
                [5]

                Present address: Department Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University, Fukuoka, 812-8582, JAPAN

                [6]

                Present address: Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

                Article
                NIHMS845084
                10.1038/ncb3475
                5467892
                28218906
                0762650c-9a29-4259-a549-8ece837a2247

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article