42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Holliday junction resolution: Regulation in space and time

      research-article
      , *
      DNA Repair
      Elsevier
      DNA repair, Cell-cycle, Recombination, Nuclease, Resolvase, Mus81, Mms4, EME1, Yen1, GEN1, Cdc5, PLK1, Slx1, Slx4

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Holliday junctions (HJs) can be formed between sister chromatids or homologous chromosomes during the recombinational repair of DNA lesions. A variety of pathways act upon HJs to remove them from DNA, in events that are critical for appropriate chromosome segregation. Despite the identification and characterization of multiple enzymes involved in HJ processing, the cellular mechanisms that regulate and implement pathway usage have only just started to be delineated. A conserved network of core cell-cycle kinases and phosphatases modulate HJ metabolism by exerting spatial and temporal control over the activities of two structure-selective nucleases: yeast Mus81-Mms4 (human MUS81-EME1) and Yen1 (human GEN1). These regulatory cycles operate to establish the sequential activation of HJ processing enzymes, implementing a hierarchy in pathway usage that ensure the elimination of chromosomal interactions which would otherwise interfere with chromosome segregation. Mus81-Mms4/EME1 and Yen1/GEN1 emerge to define a special class of enzymes, evolved to satisfy the cellular need of safeguarding the completion of DNA repair when on the verge of chromosome segregation.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The Bloom's syndrome helicase suppresses crossing over during homologous recombination.

          Mutations in BLM, which encodes a RecQ helicase, give rise to Bloom's syndrome, a disorder associated with cancer predisposition and genomic instability. A defining feature of Bloom's syndrome is an elevated frequency of sister chromatid exchanges. These arise from crossing over of chromatid arms during homologous recombination, a ubiquitous process that exists to repair DNA double-stranded breaks and damaged replication forks. Whereas crossing over is required in meiosis, in mitotic cells it can be associated with detrimental loss of heterozygosity. BLM forms an evolutionarily conserved complex with human topoisomerase IIIalpha (hTOPO IIIalpha), which can break and rejoin DNA to alter its topology. Inactivation of homologues of either protein leads to hyper-recombination in unicellular organisms. Here, we show that BLM and hTOPO IIIalpha together effect the resolution of a recombination intermediate containing a double Holliday junction. The mechanism, which we term double-junction dissolution, is distinct from classical Holliday junction resolution and prevents exchange of flanking sequences. Loss of such an activity explains many of the cellular phenotypes of Bloom's syndrome. These results have wider implications for our understanding of the process of homologous recombination and the mechanisms that exist to prevent tumorigenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Bloom's syndrome gene product is homologous to RecQ helicases.

            The Bloom's syndrome (BS) gene, BLM, plays an important role in the maintenance of genomic stability in somatic cells. A candidate for BLM was identified by direct selection of a cDNA derived from a 250 kb segment of the genome to which BLM had been assigned by somatic crossover point mapping. In this novel mapping method, cells were used from persons with BS that had undergone intragenic recombination within BLM. cDNA analysis of the candidate gene identified a 4437 bp cDNA that encodes a 1417 amino acid peptide with homology to the RecQ helicases, a subfamily of DExH box-containing DNA and RNA helicases. The presence of chain-terminating mutations in the candidate gene in persons with BS proved that it was BLM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast.

              Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied by a crossover appear 30 min before conversions accompanied by exchange, indicating that there are two different repair mechanisms in mitotic cells. Crossovers are rare (5%), but deleting the BLM/WRN homolog, SGS1, or the SRS2 helicase increases crossovers 2- to 3-fold. Overexpressing SRS2 nearly eliminates crossovers, whereas overexpression of RAD51 in srs2Delta cells almost completely eliminates the noncrossover recombination pathway. We suggest Sgs1 and its associated topoisomerase Top3 remove double Holliday junction intermediates from a crossover-producing repair pathway, thereby reducing crossovers. Srs2 promotes the noncrossover synthesis-dependent strand-annealing (SDSA) pathway, apparently by regulating Rad51 binding during strand exchange.
                Bookmark

                Author and article information

                Contributors
                Journal
                DNA Repair (Amst)
                DNA Repair (Amst.)
                DNA Repair
                Elsevier
                1568-7864
                1568-7856
                1 July 2014
                July 2014
                : 19
                : 100
                : 176-181
                Affiliations
                [0005]London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
                Author notes
                [* ]Corresponding author. Tel.: +44 1707 625868. stephen.west@ 123456cancer.org.uk
                Article
                S1568-7864(14)00084-6
                10.1016/j.dnarep.2014.03.013
                4065333
                24767945
                07c82c21-2d4f-4f47-9a25-b957b9d40541
                © 2014 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                Categories
                Article

                Genetics
                dna repair,cell-cycle,recombination,nuclease,resolvase,mus81,mms4,eme1,yen1,gen1,cdc5,plk1,slx1,slx4
                Genetics
                dna repair, cell-cycle, recombination, nuclease, resolvase, mus81, mms4, eme1, yen1, gen1, cdc5, plk1, slx1, slx4

                Comments

                Comment on this article