50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Role for Phosphatidic Acid in the Formation of “Supersized” Lipid Droplets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence adipogenesis, the rate of lipolysis and the oxidation of fatty acids. Here, a genome-wide screen identifies ten yeast mutants producing “supersized” LDs that are up to 50 times the volume of those in wild-type cells. The mutated genes include: FLD1, which encodes a homologue of mammalian seipin; five genes ( CDS1, INO2, INO4, CHO2, and OPI3) that are known to regulate phospholipid metabolism; two genes ( CKB1 and CKB2) encoding subunits of the casein kinase 2; and two genes ( MRPS35 and RTC2) of unknown function. Biochemical and genetic analyses reveal that a common feature of these mutants is an increase in the level of cellular phosphatidic acid (PA). Results from in vivo and in vitro analyses indicate that PA may facilitate the coalescence of contacting LDs, resulting in the formation of “supersized” LDs. In summary, our results provide important insights into how the size of LDs is determined and identify novel gene products that regulate phospholipid metabolism.

          Author Summary

          Lipid droplets (LD) are primary lipid storage structures that also function in membrane and lipid trafficking, protein turnover, and the reproduction of deadly viruses. Increased LD accumulation in liver, skeletal muscle, and adipose tissue is a hallmark of the metabolic syndrome. Enlarged LDs are often found in these tissues under disease conditions. However, little is known about how the size of LDs is controlled in eukaryotic cells. In this study, we use genetic and biochemical methods to identify important gene products that regulate the size of the LDs. Notably, a common feature among these mutants with “supersized” LDs is an increased level of phosphatidic acid (PA). We also show that a small amount of PA can increase the size of artificial LDs in vitro. Overall, our study identifies important lipids and proteins in determining LD size. These results provide valuable insights into how human cells/tissues handle abnormal influx of lipids in today's obesogenic environment.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The lipid droplet is an important organelle for hepatitis C virus production.

          The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid droplets: a unified view of a dynamic organelle.

            Lipid droplets form the main lipid store in eukaryotic cells. Although all cells seem to be able to generate lipid droplets, their biogenesis, regulatory mechanisms and interactions with other organelles remain largely elusive. In this article, we outline some of the recent developments in lipid droplet cell biology. We show the mobile and dynamic nature of this organelle, and advocate the adoption of a unified nomenclature to consolidate terminology in this emerging field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid droplets finally get a little R-E-S-P-E-C-T.

              Long underappreciated as important cellular organelles, lipid droplets are finally being recognized as dynamic structures with a complex and interesting biology. In light of this newfound respect, we discuss emerging views on lipid droplet biology and speculate on the major advances to come.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2011
                July 2011
                28 July 2011
                : 7
                : 7
                : e1002201
                Affiliations
                [1 ]School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
                [2 ]Department of Biochemistry, National University of Singapore, Singapore, Singapore
                [3 ]Department of Biological Sciences, National University of Singapore, Singapore, Singapore
                [4 ]Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
                [5 ]Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
                [6 ]Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
                [7 ]Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
                University of California San Francisco, United States of America
                Author notes

                Conceived and designed the experiments: WF TCW HY. Performed the experiments: WF YZ GS NK CF TSK. Analyzed the data: WF GS MRW RCL IWD AJB PL XH TCW HY. Contributed reagents/materials/analysis tools: WF YZ GS MRW NK CF TSK RGP. Wrote the paper: WF HY.

                Article
                PGENETICS-D-10-00156
                10.1371/journal.pgen.1002201
                3145623
                21829381
                084d6d1a-5c2e-4a2d-b8ec-f9a8beeb8ba8
                Fei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 October 2010
                : 8 June 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Biochemistry
                Lipids
                Genetics
                Genetic Screens
                Model Organisms

                Genetics
                Genetics

                Comments

                Comment on this article