94
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Analysis of Proteome and Transcriptome Variation in Mouse

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relationships between the levels of transcripts and the levels of the proteins they encode have not been examined comprehensively in mammals, although previous work in plants and yeast suggest a surprisingly modest correlation. We have examined this issue using a genetic approach in which natural variations were used to perturb both transcript levels and protein levels among inbred strains of mice. We quantified over 5,000 peptides and over 22,000 transcripts in livers of 97 inbred and recombinant inbred strains and focused on the 7,185 most heritable transcripts and 486 most reliable proteins. The transcript levels were quantified by microarray analysis in three replicates and the proteins were quantified by Liquid Chromatography–Mass Spectrometry using O(18)-reference-based isotope labeling approach. We show that the levels of transcripts and proteins correlate significantly for only about half of the genes tested, with an average correlation of 0.27, and the correlations of transcripts and proteins varied depending on the cellular location and biological function of the gene. We examined technical and biological factors that could contribute to the modest correlation. For example, differential splicing clearly affects the analyses for certain genes; but, based on deep sequencing, this does not substantially contribute to the overall estimate of the correlation. We also employed genome-wide association analyses to map loci controlling both transcript and protein levels. Surprisingly, little overlap was observed between the protein- and transcript-mapped loci. We have typed numerous clinically relevant traits among the strains, including adiposity, lipoprotein levels, and tissue parameters. Using correlation analysis, we found that a low number of clinical trait relationships are preserved between the protein and mRNA gene products and that the majority of such relationships are specific to either the protein levels or transcript levels. Surprisingly, transcript levels were more strongly correlated with clinical traits than protein levels. In light of the widespread use of high-throughput technologies in both clinical and basic research, the results presented have practical as well as basic implications.

          Author Summary

          An old dogma in biology states that, in every cell, the flow of biological information is from DNA to RNA to proteins and that the latter act as a working force to determine the organism's phenotype. This model predicts that changes in DNA that affect the clinical phenotype should also similarly change the cellular levels of RNA and protein levels. In this report, we test this prediction by looking at the concordance between DNA variation in population of mouse inbred strains, the RNA and protein variation in the liver tissue of these mice, and variation in metabolic phenotypes. We show that the relationship between various biological traits is not simple and that there is relatively little concordance of RNA levels and the corresponding protein levels in response to DNA perturbations. In addition, we also find that, surprisingly, metabolic traits correlate better to RNA levels than to protein levels. In light of current efforts in searching for the molecular bases of disease susceptibility in humans, our findings highlight the complexity of information flow that underlies clinical outcomes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic dissection of transcriptional regulation in budding yeast.

          To begin to understand the genetic architecture of natural variation in gene expression, we carried out genetic linkage analysis of genomewide expression patterns in a cross between a laboratory strain and a wild strain of Saccharomyces cerevisiae. Over 1500 genes were differentially expressed between the parent strains. Expression levels of 570 genes were linked to one or more different loci, with most expression levels showing complex inheritance patterns. The loci detected by linkage fell largely into two categories: cis-acting modulators of single genes and trans-acting modulators of many genes. We found eight such trans-acting loci, each affecting the expression of a group of 7 to 94 genes of related function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of gene expression surveyed in maize, mouse and man.

            Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma. One study recently completed the first comprehensive dissection of transcriptional regulation in budding yeast, giving a detailed glimpse of a genome-wide survey of the genetics of gene expression. Unlike classical quantitative traits, which often represent gross clinical measurements that may be far removed from the biological processes giving rise to them, the genetic linkages associated with transcript abundance affords a closer look at cellular biochemical processes. Here we describe comprehensive genetic screens of mouse, plant and human transcriptomes by considering gene expression values as quantitative traits. We identify a gene expression pattern strongly associated with obesity in a murine cross, and observe two distinct obesity subtypes. Furthermore, we find that these obesity subtypes are under the control of different loci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans.

              Upstream ORFs (uORFs) are mRNA elements defined by a start codon in the 5' UTR that is out-of-frame with the main coding sequence. Although uORFs are present in approximately half of human and mouse transcripts, no study has investigated their global impact on protein expression. Here, we report that uORFs correlate with significantly reduced protein expression of the downstream ORF, based on analysis of 11,649 matched mRNA and protein measurements from 4 published mammalian studies. Using reporter constructs to test 25 selected uORFs, we estimate that uORFs typically reduce protein expression by 30-80%, with a modest impact on mRNA levels. We additionally identify polymorphisms that alter uORF presence in 509 human genes. Finally, we report that 5 uORF-altering mutations, detected within genes previously linked to human diseases, dramatically silence expression of the downstream protein. Together, our results suggest that uORFs influence the protein expression of thousands of mammalian genes and that variation in these elements can influence human phenotype and disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2011
                June 2011
                9 June 2011
                : 7
                : 6
                : e1001393
                Affiliations
                [1 ]Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
                [2 ]Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
                [3 ]Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
                [4 ]Department of Medicine, Department of Biochemistry and Molecular Genetics, and Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
                [5 ]Biostatistics Department, University of Michigan Ann Arbor, Ann Arbor, Michigan, United States of America
                [6 ]Department of Computer Science, University of California Los Angeles, Los Angeles, California, United States of America
                [7 ]Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
                [8 ]Department of Applied Genomics, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
                [9 ]Department of Atherosclerosis Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
                [10 ]Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
                [11 ]Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
                Stanford University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: AG BB VAP LO CRF CCP PG EE TK DJS RDS AJL. Performed the experiments: AG BB VAP LO INM CRF CCP PZW HB KW DGC RY TK RDS AJL. Analyzed the data: AG BB VAP LO RH INM JS HMK NF CP RY IN CT NS PG DJS AJL. Contributed reagents/materials/analysis tools: AG JS HMK CCP PZW KW DGC RY IN EE DJS AJL. Wrote the paper: AG BB VAP LO RH INM.

                Article
                10-PLGE-RA-3635R2
                10.1371/journal.pgen.1001393
                3111477
                21695224
                09ebe435-ee36-4cd3-99ed-a913809158e5
                Ghazalpour et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 July 2010
                : 10 May 2011
                Page count
                Pages: 17
                Categories
                Research Article
                Genetics and Genomics
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Complex Traits
                Genetics and Genomics/Gene Expression
                Genetics and Genomics/Genetics of Disease
                Genetics and Genomics/Genomics
                Genetics and Genomics/Physiogenomics

                Genetics
                Genetics

                Comments

                Comment on this article