3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alveolar macrophage - derived exosomes modulate severity and outcome of acute lung injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute lung injury (ALI) can cause death, and the survivals may develop acute respiratory distress syndrome (ARDS) due to fibrotic repair of the lung. Alveolar macrophages play a demonstrative role during the pathogenesis of ALI, and the timing and degree of differentially polarization of macrophages determine the severity of disease and outcome. Exosomes are important mediators of cellular communication and play critical roles during macrophage differentiation, proliferation and function. Nevertheless, the exact effects of alveolar macrophage - derived exosomes on ALI remain unknow. Here, we used lipopolysaccharide (LPS) to induce ALI in mice and analyzed the exosome population in bronchoalveolar lavage fluid (BALF) from macrophages, neutrophils and epithelial cells at different time points after treatment. Our data showed that macrophages were the major secretors for early secreted pro-inflammatory cytokines in the BALF-exosomes, which likely activated neutrophils to produce a variety of pro-inflammatory cytokines and IL-10. IL-10 by neutrophils in BALF-exosomes likely in turn polarized macrophages to M2c, which may be responsible for post-ALI fibrosis. Our study thus reveals a previous non-acknowledged role of BALF-exosomes as a mediator of inflammatory response and cell crosstalk during ALI.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule

          The epithelial glycoprotein 40 (EGP40, also known as GA733-2, ESA, KSA, and the 17-1A antigen), encoded by the GA-733-2 gene, is expressed on the baso-lateral cell surface in most human simple epithelia. The protein is also expressed in the vast majority of carcinomas and has attracted attention as a tumor marker. The function of the protein is unknown. We demonstrate here that EGP40 is an epithelium-specific intercellular adhesion molecule. The molecule mediates, in a Ca(2+)- independent manner, a homophilic cell-cell adhesion of murine cells transfected with the complete EGP40 cDNA. Two murine cell lines were tested for the effects of EGP40 expression: fibroblastic L cells and dedifferentiated mammary carcinoma L153S cells. The expression of the EGP40 protein causes morphological changes in cultures of transfected cells--increasing intercellular adhesion of the transfectants--and has a clear effect on cell aggregating behavior in suspension aggregation assays. EGP40 directs sorting in mixed cell populations, in particular, causes segregation of the transfectants from the corresponding parental cells. EGP40 expression suppresses invasive colony growth of L cells in EHS-matrigel providing tight adhesions between cells in growing colonies. EGP40 can thus be considered a new member of the intercellular adhesion molecules. In its biological behavior EGP40 resembles to some extent the molecules of the immunoglobulin superfamily of cell adhesion molecules (CAMs), although no immunoglobulin-like repeats are present in the EGP40 molecule. Certain structural similarities in general organization of the molecule exist between EGP40 and the lin-12/Notch proteins. A possible role of this adhesion molecule in formation of architecture of epithelial tissues is discussed. To reflect the function of the molecule the name Ep-CAM for EGP40 seems appropriate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Alveolar macrophage-derived microvesicles mediate acute lung injury

            Background Microvesicles (MVs) are important mediators of intercellular communication, packaging a variety of molecular cargo. They have been implicated in the pathophysiology of various inflammatory diseases; yet, their role in acute lung injury (ALI) remains unknown. Objectives We aimed to identify the biological activity and functional role of intra-alveolar MVs in ALI. Methods Lipopolysaccharide (LPS) was instilled intratracheally into C57BL/6 mice, and MV populations in bronchoalveolar lavage fluid (BALF) were evaluated. BALF MVs were isolated 1 hour post LPS, assessed for cytokine content and incubated with murine lung epithelial (MLE-12) cells. In separate experiments, primary alveolar macrophage-derived MVs were incubated with MLE-12 cells or instilled intratracheally into mice. Results Alveolar macrophages and epithelial cells rapidly released MVs into the alveoli following LPS. At 1 hour, the dominant population was alveolar macrophage-derived, and these MVs carried substantive amounts of tumour necrosis factor (TNF) but minimal amounts of IL-1β/IL-6. Incubation of these mixed MVs with MLE-12 cells induced epithelial intercellular adhesion molecule-1 (ICAM-1) expression and keratinocyte-derived cytokine release compared with MVs from untreated mice (p<0.001). MVs released in vitro from LPS-primed alveolar macrophages caused similar increases in MLE-12 ICAM-1 expression, which was mediated by TNF. When instilled intratracheally into mice, these MVs induced increases in BALF neutrophils, protein and epithelial cell ICAM-1 expression (p<0.05). Conclusions We demonstrate, for the first time, the sequential production of MVs from different intra-alveolar precursor cells during the early phase of ALI. Our findings suggest that alveolar macrophage-derived MVs, which carry biologically active TNF, may play an important role in initiating ALI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2.

              Integrin alphaMbeta2 (Mac-1, CD11b/CD18) is a noncovalently linked heterodimer of alphaM and beta2 subunits on the surface of leukocytes, where it plays a pivotal role in the adhesion and migration of these cells. Using HEK293 cells expressing alphaMbeta2 or the individual constituent chains on their surface, we analyzed the contributions of the alphaM or beta2 subunits to functional responses mediated by the integrin. In cells expressing only alphaM or beta2, the individual subunits were not associated with the endogenous integrins of the cells, and other partners for the subunits were not detected by surface labeling and immunoprecipitation under a variety of conditions. The alphaM cells mediated adhesion and spreading on a series of alphaMbeta2 ligands (fibrinogen, Factor X, iC3b, ICAM-1 (intercellular adhesion molecule-1), and denatured ovalbumin) but could not support cell migration to any of these. The spreading of the alphaM cells suggested an unanticipated linkage of this subunit to the cytoskeleton. The beta2 cells supported migration and attachment but not spreading on a subset of the alphaMbeta2 ligands. The heterodimeric receptor and its individual subunits were purified from the cells by affinity chromatography and recapitulated the ligand binding properties of the corresponding cell lines. These data indicate that each subunit of alphaMbeta2 contributes distinct properties to alphaMbeta2 and that, in most but not all cases, the response of the integrin is a composite of the functions of its individual subunits.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 April 2020
                07 April 2020
                : 12
                : 7
                : 6120-6128
                Affiliations
                [1 ]Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
                [2 ]Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
                [3 ]Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
                [4 ]Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
                Author notes
                Correspondence to: Weixi Wang; email: xh98177@yeah.net
                Correspondence to: Gening Jiang; email: jgnwp@aliyun.com
                Article
                103010 103010
                10.18632/aging.103010
                7185135
                32259794
                0a88f3fc-21a8-49d1-810f-0ce823650cd7
                Copyright © 2020 Ye et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 08 January 2020
                : 20 February 2020
                Categories
                Research Paper

                Cell biology
                acute lung injury (ali),macrophages,neutrophils,exosomes,bronchoalveolar lavage fluid (balf)

                Comments

                Comment on this article