53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein content and amino acid composition of commercially available plant-based protein isolates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The postprandial rise in essential amino acid (EAA) concentrations modulates the increase in muscle protein synthesis rates after protein ingestion. The EAA content and AA composition of the dietary protein source contribute to the differential muscle protein synthetic response to the ingestion of different proteins. Lower EAA contents and specific lack of sufficient leucine, lysine, and/or methionine may be responsible for the lower anabolic capacity of plant-based compared with animal-based proteins. We compared EAA contents and AA composition of a large selection of plant-based protein sources with animal-based proteins and human skeletal muscle protein. AA composition of oat, lupin, wheat, hemp, microalgae, soy, brown rice, pea, corn, potato, milk, whey, caseinate, casein, egg, and human skeletal muscle protein were assessed using UPLC–MS/MS. EAA contents of plant-based protein isolates such as oat (21%), lupin (21%), and wheat (22%) were lower than animal-based proteins (whey 43%, milk 39%, casein 34%, and egg 32%) and muscle protein (38%). AA profiles largely differed among plant-based proteins with leucine contents ranging from 5.1% for hemp to 13.5% for corn protein, compared to 9.0% for milk, 7.0% for egg, and 7.6% for muscle protein. Methionine and lysine were typically lower in plant-based proteins (1.0 ± 0.3 and 3.6 ± 0.6%) compared with animal-based proteins (2.5 ± 0.1 and 7.0 ± 0.6%) and muscle protein (2.0 and 7.8%, respectively). In conclusion, there are large differences in EAA contents and AA composition between various plant-based protein isolates. Combinations of various plant-based protein isolates or blends of animal and plant-based proteins can provide protein characteristics that closely reflect the typical characteristics of animal-based proteins.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Sestrin2 is a leucine sensor for the mTORC1 pathway.

          Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Converting nitrogen into protein--beyond 6.25 and Jones' factors.

            The protein content in foodstuffs is estimated by multiplying the determined nitrogen content by a nitrogen-to-protein conversion factor. Jones' factors for a series of foodstuffs, including 6.25 as the standard, default conversion factor, have now been used for 75 years. This review provides a brief history of these factors and their underlying paradigm, with an insight into what is meant by "protein." We also review other compelling data on specific conversion factors which may have been overlooked. On the one hand, when 6.25 is used irrespective of the foodstuff, "protein" is simply nitrogen expressed using a different unit and says little about protein (s.s.). On the other hand, conversion factors specific to foodstuffs, such as those provided by Jones, are scientifically flawed. However, the nitrogen:protein ratio does vary according to the foodstuff considered. Therefore, from a scientific point of view, it would be reasonable not to apply current specific factors any longer, but they have continued to be used because scientists fear opening the Pandora's box. But because conversion factors are critical to enabling the simple conversion of determined nitrogen values into protein values and thus accurately evaluating the quantity and the quality of protein in foodstuffs, we propose a set of specific conversion factors for different foodstuffs, together with a default conversion factor (5.6). This would be far more accurate and scientifically sound, and preferable when specifically expressing nitrogen as protein. These factors are of particular importance when "protein" basically means "amino acids," this being the principal nutritional viewpoint.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men

              Background Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare changes in myofibrillar protein synthesis (MPS) in elderly men at rest and after resistance exercise following ingestion of different doses of soy protein and compare the responses to those we previously observed with ingestion of whey protein isolate. Methods Thirty elderly men (age 71 ± 5 y) completed a bout of unilateral knee-extensor resistance exercise prior to ingesting no protein (0 g), or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively). We compared these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein isolate (W20 and W40). A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption in both exercised and non-exercised legs. Results Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs. W20 (P = 0.003). Rates of MPS for S20 were less than W20 (P = 0.02) and not different from 0 g (P = 0.41) in both exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested and post-exercise conditions (both P < 0.005); however S40 increased MPS greater than 0 g under post-exercise conditions (P = 0.04). Conclusions The relationship between protein intake and MPS is both dose and protein source-dependent, with isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of amino acid oxidation following ingestion of soy versus whey protein.
                Bookmark

                Author and article information

                Contributors
                +31 43 388 1397 , L.vanLoon@maastrichtuniversity.nl
                Journal
                Amino Acids
                Amino Acids
                Amino Acids
                Springer Vienna (Vienna )
                0939-4451
                1438-2199
                30 August 2018
                30 August 2018
                2018
                : 50
                : 12
                : 1685-1695
                Affiliations
                [1 ]ISNI 0000 0004 0480 1382, GRID grid.412966.e, NUTRIM School of Nutrition and Translational Research in Metabolism, , Maastricht University Medical Centre+, ; PO Box 616, 6200 MD Maastricht, The Netherlands
                [2 ]ISNI 0000 0004 0480 1382, GRID grid.412966.e, Department of Clinical Genetics, , Maastricht University Medical Centre+, ; Maastricht, The Netherlands
                Author notes

                Handling Editor: F. Blachier.

                Article
                2640
                10.1007/s00726-018-2640-5
                6245118
                30167963
                0b67a543-0f7e-47db-8b91-5545fbcc167b
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 19 March 2018
                : 24 August 2018
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Austria, part of Springer Nature 2018

                Genetics
                essential amino acid,leucine,plant-based protein,muscle protein synthesis,protein blend
                Genetics
                essential amino acid, leucine, plant-based protein, muscle protein synthesis, protein blend

                Comments

                Comment on this article