2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spontaneous canine cancers are valuable but relatively understudied and underutilized models. To enhance their usage, we reanalyze whole exome and genome sequencing data published for 684 cases of >7 common tumor types and >35 breeds, with rigorous quality control and breed validation. Our results indicate that canine tumor alteration landscape is tumor type-dependent, but likely breed-independent. Each tumor type harbors major pathway alterations also found in its human counterpart (e.g., PI3K in mammary tumor and p53 in osteosarcoma). Mammary tumor and glioma have lower tumor mutational burden (TMB) (median < 0.5 mutations per Mb), whereas oral melanoma, osteosarcoma and hemangiosarcoma have higher TMB (median ≥ 1 mutations per Mb). Across tumor types and breeds, TMB is associated with mutation of TP53 but not PIK3CA, the most mutated genes. Golden Retrievers harbor a TMB-associated and osteosarcoma-enriched mutation signature. Here, we provide a snapshot of canine mutations across major tumor types and breeds.

          Abstract

          Genomic studies of canine tumours have been done for individual cancer types or dog breeds. Here the authors analyse canine tumour genomics data across multiple breeds and cancer types, finding that mutational burden is associated with TP53 mutations and that Golden Retrievers are enriched for particular signatures.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Hallmarks of Cancer: The Next Generation

            The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

              The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
                Bookmark

                Author and article information

                Contributors
                szhao@uga.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                3 August 2021
                3 August 2021
                2021
                : 12
                : 4670
                Affiliations
                [1 ]GRID grid.213876.9, ISNI 0000 0004 1936 738X, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, , University of Georgia, ; Athens, GA USA
                [2 ]GRID grid.452562.2, ISNI 0000 0000 8808 6435, National Center for Genomics Technology, , King Abdulaziz City for Science and Technology, ; Riyadh, Saudi Arabia
                [3 ]GRID grid.213876.9, ISNI 0000 0004 1936 738X, Department of Epidemiology and Biostatistics, , University of Georgia, ; Athens, GA USA
                Author information
                http://orcid.org/0000-0001-6384-5973
                http://orcid.org/0000-0001-5852-9570
                Article
                24836
                10.1038/s41467-021-24836-9
                8333103
                34344882
                11e98747-e83e-4c54-a73b-2c5a21e1f135
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 October 2020
                : 8 July 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000054, U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI);
                Award ID: NCI R01 CA182093
                Award ID: NCI R01 CA252713
                Award Recipient :
                Funded by: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cancer genomics,cancer models
                Uncategorized
                cancer genomics, cancer models

                Comments

                Comment on this article