18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VarCards: an integrated genetic and clinical database for coding variants in the human genome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A growing number of genomic tools and databases were developed to facilitate the interpretation of genomic variants, particularly in coding regions. However, these tools are separately available in different online websites or databases, making it challenging for general clinicians, geneticists and biologists to obtain the first-hand information regarding some particular variants and genes of interest. Starting with coding regions and splice sties, we artificially generated all possible single nucleotide variants ( n = 110 154 363) and cataloged all reported insertion and deletions ( n = 1 223 370). We then annotated these variants with respect to functional consequences from more than 60 genomic data sources to develop a database, named VarCards ( http://varcards.biols.ac.cn/), by which users can conveniently search, browse and annotate the variant- and gene-level implications of given variants, including the following information: (i) functional effects; (ii) functional consequences through different in silico algorithms; (iii) allele frequencies in different populations; (iv) disease- and phenotype-related knowledge; (v) general meaningful gene-level information; and (vi) drug–gene interactions. As a case study, we successfully employed VarCards in interpretation of de novo mutations in autism spectrum disorders. In conclusion, VarCards provides an intuitive interface of necessary information for researchers to prioritize candidate variations and genes.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs.

          The purpose of the dbNSFP is to provide a one-stop resource for functional predictions and annotations for human nonsynonymous single-nucleotide variants (nsSNVs) and splice-site variants (ssSNVs), and to facilitate the steps of filtering and prioritizing SNVs from a large list of SNVs discovered in an exome-sequencing study. A list of all potential nsSNVs and ssSNVs based on the human reference sequence were created and functional predictions and annotations were curated and compiled for each SNV. Here, we report a recent major update of the database to version 3.0. The SNV list has been rebuilt based on GENCODE 22 and currently the database includes 82,832,027 nsSNVs and ssSNVs. An attached database dbscSNV, which compiled all potential human SNVs within splicing consensus regions and their deleteriousness predictions, add another 15,030,459 potentially functional SNVs. Eleven prediction scores (MetaSVM, MetaLR, CADD, VEST3, PROVEAN, 4× fitCons, fathmm-MKL, and DANN) and allele frequencies from the UK10K cohorts and the Exome Aggregation Consortium (ExAC), among others, have been added. The original seven prediction scores in v2.0 (SIFT, 2× Polyphen2, LRT, MutationTaster, MutationAssessor, and FATHMM) as well as many SNV and gene functional annotations have been updated. dbNSFP v3.0 is freely available at http://sites.google.com/site/jpopgen/dbNSFP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DANN: a deep learning approach for annotating the pathogenicity of genetic variants.

            Annotating genetic variants, especially non-coding variants, for the purpose of identifying pathogenic variants remains a challenge. Combined annotation-dependent depletion (CADD) is an algorithm designed to annotate both coding and non-coding variants, and has been shown to outperform other annotation algorithms. CADD trains a linear kernel support vector machine (SVM) to differentiate evolutionarily derived, likely benign, alleles from simulated, likely deleterious, variants. However, SVMs cannot capture non-linear relationships among the features, which can limit performance. To address this issue, we have developed DANN. DANN uses the same feature set and training data as CADD to train a deep neural network (DNN). DNNs can capture non-linear relationships among features and are better suited than SVMs for problems with a large number of samples and features. We exploit Compute Unified Device Architecture-compatible graphics processing units and deep learning techniques such as dropout and momentum training to accelerate the DNN training. DANN achieves about a 19% relative reduction in the error rate and about a 14% relative increase in the area under the curve (AUC) metric over CADD's SVM methodology. All data and source code are available at https://cbcl.ics.uci.edu/public_data/DANN/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines.

              In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published updated standards and guidelines for the clinical interpretation of sequence variants with respect to human diseases on the basis of 28 criteria. However, variability between individual interpreters can be extensive because of reasons such as the different understandings of these guidelines and the lack of standard algorithms for implementing them, yet computational tools for semi-automated variant interpretation are not available. To address these problems, we propose a suite of methods for implementing these criteria and have developed a tool called InterVar to help human reviewers interpret the clinical significance of variants. InterVar can take a pre-annotated or VCF file as input and generate automated interpretation on 18 criteria. Furthermore, we have developed a companion web server, wInterVar, to enable user-friendly variant interpretation with an automated interpretation step and a manual adjustment step. These tools are especially useful for addressing severe congenital or very early-onset developmental disorders with high penetrance. Using results from a few published sequencing studies, we demonstrate the utility of InterVar in significantly reducing the time to interpret the clinical significance of sequence variants.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                04 January 2018
                03 November 2017
                03 November 2017
                : 46
                : Database issue , Database issue
                : D1039-D1048
                Affiliations
                Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025, China
                National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
                Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
                Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
                Author notes
                To whom correspondence should be addressed. Tel: +86 010 64864959; Fax: +86 10 84504120; Email: sunzsbiols@ 123456126.com . Correspondence may also be addressed to Liying Ji. Email: jiliying15@ 123456163.com

                These authors contributed equally to the paper as first authors.

                Article
                gkx1039
                10.1093/nar/gkx1039
                5753295
                29112736
                1321f249-47d6-4317-84d7-8a91158132bf
                © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 18 October 2017
                : 16 October 2017
                : 15 August 2017
                Page count
                Pages: 10
                Categories
                Database Issue

                Genetics
                Genetics

                Comments

                Comment on this article