35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DNA Origami Route for Nanophotonics

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The specificity and simplicity of the Watson–Crick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We conclude by outlining the future prospects of the DNA origami technique for advanced nanophotonic systems with tailored functionalities.

          Related collections

          Most cited references195

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA-based method for rationally assembling nanoparticles into macroscopic materials.

          Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-assembly of DNA into nanoscale three-dimensional shapes

            Molecular self-assembly offers a ‘bottom-up’ route to fabrication with subnanometre precision of complex structures from simple components1. DNA has proven a versatile building block2–5 for programmable construction of such objects, including two-dimensional crystals6, nanotubes7–11, and three-dimensional wireframe nanopolyhedra12–17. Templated self-assembly of DNA18 into custom two-dimensional shapes on the megadalton scale has been demonstrated previously with a multiple-kilobase ‘scaffold strand’ that is folded into a flat array of antiparallel helices by interactions with hundreds of oligonucleotide ‘staple strands’19, 20. Here we extend this method to building custom three-dimensional shapes formed as pleated layers of helices constrained to a honeycomb lattice. We demonstrate the design and assembly of nanostructures approximating six shapes — monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross — with precisely controlled dimensions ranging from 10 to 100 nm. We also show hierarchical assembly of structures such as homomultimeric linear tracks and of heterotrimeric wireframe icosahedra. Proper assembly requires week-long folding times and calibrated monovalent and divalent cation concentrations. We anticipate that our strategy for self-assembling custom three-dimensional shapes will provide a general route to the manufacture of sophisticated devices bearing features on the nanometer scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A logic-gated nanorobot for targeted transport of molecular payloads.

              We describe an autonomous DNA nanorobot capable of transporting molecular payloads to cells, sensing cell surface inputs for conditional, triggered activation, and reconfiguring its structure for payload delivery. The device can be loaded with a variety of materials in a highly organized fashion and is controlled by an aptamer-encoded logic gate, enabling it to respond to a wide array of cues. We implemented several different logical AND gates and demonstrate their efficacy in selective regulation of nanorobot function. As a proof of principle, nanorobots loaded with combinations of antibody fragments were used in two different types of cell-signaling stimulation in tissue culture. Our prototype could inspire new designs with different selectivities and biologically active payloads for cell-targeting tasks.
                Bookmark

                Author and article information

                Journal
                ACS Photonics
                ACS Photonics
                ph
                apchd5
                ACS Photonics
                American Chemical Society
                2330-4022
                12 February 2018
                18 April 2018
                : 5
                : 4
                : 1151-1163
                Affiliations
                []Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3, D-70569 Stuttgart, Germany
                []Department of Neuroscience and Biomedical Engineering, Aalto University School of Science , P.O. Box 12200, FI-00076 Aalto, Finland
                [§ ]Department of Physics and Center for Nanoscience, Ludwig Maximilian University , 80539 Munich, Germany
                []Max Planck Institute of Biochemistry , 82152 Martinsried near Munich, Germany
                []Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Rebenring 56, 38106 Braunschweig, Germany
                [# ]Kirchhoff Institute for Physics, University of Heidelberg , Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
                Author notes
                Article
                10.1021/acsphotonics.7b01580
                6156112
                30271812
                14da4949-3605-4feb-9981-00775d280cde
                Copyright © 2018 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 20 December 2017
                : 11 February 2018
                : 06 February 2018
                Categories
                Perspective
                Custom metadata
                ph7b01580
                ph-2017-01580n

                dna origami,molecular self-assembly,plasmon coupling,active plasmonics,super-resolution microscopy,fluorescence enhancement

                Comments

                Comment on this article