64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial fusion is frequent in skeletal muscle and supports excitation–contraction coupling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondrial fusion is frequent in skeletal muscle, and its disruption jeopardizes excitation–contraction coupling and may contribute to the pathology of myopathies.

          Abstract

          Genetic targeting experiments indicate a fundamental role for mitochondrial fusion proteins in mammalian physiology. However, owing to the multiple functions of fusion proteins, their related phenotypes are not necessarily caused by altered mitochondrial fusion. Perhaps the biggest mystery is presented by skeletal muscle, where mostly globular-shaped mitochondria are densely packed into the narrow intermyofilamental space, limiting the interorganellar interactions. We show here that mitochondria form local networks and regularly undergo fusion events to share matrix content in skeletal muscle fibers. However, fusion events are less frequent and more stable in the fibers than in nondifferentiated myoblasts. Complementation among muscle mitochondria was suppressed by both in vivo genetic perturbations and chronic alcohol consumption that cause myopathy. An Mfn1-dependent pathway is revealed whereby fusion inhibition weakens the metabolic reserve of mitochondria to cause dysregulation of calcium oscillations during prolonged stimulation. Thus, fusion dynamically connects skeletal muscle mitochondria and its prolonged loss jeopardizes bioenergetics and excitation–contraction coupling, providing a potential pathomechanism contributing to myopathies.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts.

          Mitochondria participate in key metabolic reactions of the cell and regulate crucial signaling pathways including apoptosis. Although several approaches are available to study mitochondrial function in situ are available, investigating functional mitochondria that have been isolated from different tissues and from cultured cells offers still more unmatched advantages. This protocol illustrates a step-by-step procedure to obtain functional mitochondria with high yield from cells grown in culture, liver and muscle. The isolation procedures described here require 1-2 hours, depending on the source of the organelles. The polarographic analysis can be completed in 1 hour.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics

            Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quality control of mitochondria: protection against neurodegeneration and ageing.

              Dysfunction of mitochondria has severe cellular consequences and is linked to ageing and neurodegeneration in human. Several surveillance strategies have evolved that limit mitochondrial damage and ensure cellular integrity. Intraorganellar proteases conduct protein quality control and exert regulatory functions, membrane fusion and fission allow mitochondrial content mixing within a cell, and the autophagic degradation of severely damaged mitochondria protects against apoptosis. Here, we will summarize the current knowledge on these surveillance strategies and their role in human disease.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                28 April 2014
                : 205
                : 2
                : 179-195
                Affiliations
                [1 ]MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
                [2 ]Institut national de la santé et de la recherche médicale (INSERM) U1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France
                Author notes
                Correspondence to György Hajnóczky: gyorgy.hajnoczky@ 123456jefferson.edu
                Article
                201312066
                10.1083/jcb.201312066
                4003250
                24751540
                15978785-4c6f-4c46-89b5-1abf6b67df65
                © 2014 Eisner et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 16 December 2013
                : 21 March 2014
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article