11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain-Resident Microglia and Blood-Borne Macrophages Orchestrate Central Nervous System Inflammation in Neurodegenerative Disorders and Brain Cancer

      review-article
      *
      Frontiers in Immunology
      Frontiers Media S.A.
      neuroinflammation, tissue-resident macrophages, microglia, neurodegeneration, cancer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation is a hallmark of different central nervous system (CNS) pathologies. It has been linked to neurodegenerative disorders as well as primary and metastatic brain tumors. Microglia, the brain-resident immune cells, are emerging as a central player in regulating key pathways in CNS inflammation. Recent insights into neuroinflammation indicate that blood-borne immune cells represent an additional critical cellular component in mediating CNS inflammation. The lack of experimental systems that allow for discrimination between brain-resident and recruited myeloid cells has previously halted functional analysis of microglia and their blood-borne counterparts in brain malignancies. However, recent conceptual and technological advances, such as the generation of lineage tracing models and the identification of cell type-specific markers provide unprecedented opportunities to study the cellular functions of microglia and macrophages by functional interference. The use of different “omic” strategies as well as imaging techniques has significantly increased our knowledge of disease-associated gene signatures and effector functions under pathological conditions. In this review, recent developments in evaluating functions of brain-resident and recruited myeloid cells in neurodegenerative disorders and brain cancers will be discussed and unique or shared cellular traits of microglia and macrophages in different CNS disorders will be highlighted. Insight from these studies will shape our understanding of disease- and cell-type-specific effector functions of microglia or macrophages and will open new avenues for therapeutic intervention that target aberrant functions of myeloid cells in CNS pathologies.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Microenvironmental regulation of metastasis.

          Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Local self-renewal can sustain CNS microglia maintenance and function throughout adult life.

            Microgliosis is a common response to multiple types of damage in the CNS. However, the origin of the cells involved in this process is still controversial and the relative importance of local expansion versus recruitment of microglia progenitors from the bloodstream is unclear. Here, we investigated the origin of microglia using chimeric animals obtained by parabiosis. We found no evidence of microglia progenitor recruitment from the circulation in denervation or CNS neurodegenerative disease, suggesting that maintenance and local expansion of microglia are solely dependent on the self-renewal of CNS resident cells in these models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.

              In multiple sclerosis and the experimental autoimmune encephalitis (EAE) mouse model, two pools of morphologically indistinguishable phagocytic cells, microglia and inflammatory macrophages, accrue from proliferating resident precursors and recruitment of blood-borne progenitors, respectively. Whether these cell types are functionally equivalent is hotly debated, but is challenging to address experimentally. Using a combination of parabiosis and myeloablation to replace circulating progenitors without affecting CNS-resident microglia, we found a strong correlation between monocyte infiltration and progression to the paralytic stage of EAE. Inhibition of chemokine receptor-dependent recruitment of monocytes to the CNS blocked EAE progression, suggesting that these infiltrating cells are essential for pathogenesis. Finally, we found that, although microglia can enter the cell cycle and return to quiescence following remission, recruited monocytes vanish, and therefore do not ultimately contribute to the resident microglial pool. In conclusion, we identified two distinct subsets of myelomonocytic cells with distinct roles in neuroinflammation and disease progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                06 April 2018
                2018
                : 9
                : 697
                Affiliations
                Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany
                Author notes

                Edited by: Alessandro Michelucci, Luxembourg Institute of Health, Luxembourg

                Reviewed by: Bozena Kaminska, Nencki Institute of Experimental Biology (PAS), Poland; Jan Bauer, Medizinische Universität Wien, Austria

                *Correspondence: Lisa Sevenich, sevenich@ 123456gsh.uni-frankfurt.de

                Specialty section: This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.00697
                5897444
                29681904
                178d34be-2c26-4606-ab30-4099273f6698
                Copyright © 2018 Sevenich.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2018
                : 21 March 2018
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 137, Pages: 16, Words: 13350
                Funding
                Funded by: Deutsche Krebshilfe 10.13039/501100005972
                Categories
                Immunology
                Review

                Immunology
                neuroinflammation,tissue-resident macrophages,microglia,neurodegeneration,cancer
                Immunology
                neuroinflammation, tissue-resident macrophages, microglia, neurodegeneration, cancer

                Comments

                Comment on this article