13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long noncoding RNA AC003092.1 promotes temozolomide chemosensitivity through miR-195/TFPI-2 signaling modulation in glioblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temozolomide (TMZ) and radiation therapy combination for glioblastoma (GB) patients has been considered as the most effective therapy after surgical procedure. However, the overall clinical prognosis remains unsatisfactory due to intrinsic or developing resistance to TMZ. Recently, increasing evidence suggested that long noncoding RNAs (lncRNAs) play a critical role in various biological processes of tumors, and have been implicated in resistance to various drugs. However, the role of lncRNAs in TMZ resistance is poorly understood. Here, we found that the expression of lncRNA AC003092.1 was markedly decreased in TMZ resistance (TR) of GB cells (U87TR and U251TR) compared with their parental cells (U87 and U251). In patients with glioma, low levels of lncRNA AC003092.1 were correlated with increased TMZ resistance, higher risk of relapse, and poor prognosis. Overexpression of lncRNA AC003092.1 enhances TMZ sensitivity, facilitates cell apoptosis, and inhibits cell proliferation in TMZ-resistant GB cells. In addition, we identified that lncRNA AC003092.1 regulates TMZ chemosensitivity through TFPI-2-mediated cell apoptosis in vitro and in vivo. Mechanistically, further investigation revealed that lncRNA AC003092.1 regulates TFPI-2 expression through miR-195 in GB. Taken together, these data suggest that lncRNA AC003092.1 could inhibit the function of miR-195 by acting as an endogenous CeRNA, leading to increased expression of TFPI-2; this promotes TMZ-induced apoptosis, thereby making GB cells more sensitive to TMZ. Our findings indicate that overexpression of lncRNA AC003092.1 may be a potential therapy to overcome TMZ resistance in GB patients.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Integration of biological networks and gene expression data using Cytoscape.

          Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temozolomide: mechanisms of action, repair and resistance.

            Glioblastoma multiforme is the most common aggressive adult primary tumour of the central nervous system. Treatment includes surgery, radiotherapy and adjuvant temozolomide (TMZ) chemotherapy. TMZ is an alkylating agent prodrug, delivering a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine). The primary cytotoxic lesion, O6-methylguanine (O6-MeG) can be removed by methylguanine methyltransferase (MGMT; direct repair) in tumours expressing this protein, or tolerated in mismatch repair-deficient (MMR-) tumours. Thus MGMT or MMR deficiency confers resistance to TMZ. Inherent- and acquired resistance to TMZ present major obstacles to successful treatment. Strategies devised to thwart resistance and enhance response to TMZ, including inhibition of DNA repair mechanisms which contribute to TMZ resistance, are under clinical evaluation. Depletion of MGMT prior to alkylating agent chemotherapy prevents O6-MeG repair; thus, MGMT pseudosubstrates O6-benzylguanine and lomeguatrib are able to sensitise tumours to TMZ. Disruption of base excision repair (BER) results in persistence of potentially lethal N7- and N3- purine lesions contributing significantly to TMZ cytoxicity particularly when O6-MeG adducts are repaired or tolerated. Several small molecule inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1), a critical BER protein are yielding promising results clinically, both in combination with TMZ and as single agent chemotherapy in patients whose tumours possess homologous recombination DNA repair defects. Another validated, but as yet preclinical protein target, mandatory to BER is abasic (AP) endonuclease-1 (APE-1); in preclinical tests, APE-1 inhibition potentiates TMZ activity. An alternative strategy is synthesis of a molecule, evoking an irrepairable cytotoxic O6-G lesion. Preliminary efforts to achieve this goal are described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a.

              Long non-coding RNAs (lncRNAs) play crucial roles in the development and progression of glioma. Previous studies indicated that lncRNA H19 regulated tumor carcinogenesis, angiogenesis and metastasis. This study aimed to investigate its functional role in glioma-induced endothelial cell proliferation, migration and tube formation as well as its possible molecular mechanisms. H19 was up-regulated in microvessels from glioma tissues and glioma-associated endothelial cells (GEC) cultured in glioma conditioned medium. Knockdown of H19 suppressed glioma-induced endothelial cell proliferation, migration and tube formation in vitro and meanwhile up-regulated the expression of miR-29a. Bioinformatics analysis and luciferase reporter assay defined that H19 mediated the above effects via directly binding to miR-29a. In addition, miR-29a targeted 3'-UTR region of vasohibin 2 (VASH2) and decreased its expression. VASH2 has been identified as an angiogenic factor. Knockdown of H19 also decreased the VASH2 expression by up-regulating miR-29a. In conclusion, the results indicated that knockdown of H19 suppressed glioma induced angiogenesis by inhibiting microRNA-29a, which may modulate the onset of glioma by regulating biological behaviors of glioma vascular endothelial cells.
                Bookmark

                Author and article information

                Contributors
                +86 (20) 61643006 , guohongbo911@126.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                15 November 2018
                15 November 2018
                December 2018
                : 9
                : 12
                : 1139
                Affiliations
                [1 ]ISNI 0000 0000 8877 7471, GRID grid.284723.8, Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, , Southern Medical University, ; Guangzhou, 510282 China
                [2 ]ISNI 0000 0000 9852 649X, GRID grid.43582.38, Department of Physiology and Pharmacology, , Basic Sciences, School of Medicine, Loma Linda University, ; Loma Linda, CA 92354 USA
                Author information
                http://orcid.org/0000-0001-9055-3597
                Article
                1183
                10.1038/s41419-018-1183-8
                6237774
                30442884
                1946f379-6bae-4a86-8ae0-50808170bde2
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 May 2018
                : 20 October 2018
                : 25 October 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81672477
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article