77
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ∼192 million short reads from four cDNA libraries of M. pinnata and processed them into 108 598 unisequences with a high depth of coverage. The mean length and total length of these unisequences were 606 bp and 65.8 Mb, respectively. A total of 54 596 (50.3%) unisequences were assigned Nr annotations. Functional classification revealed the involvement of unisequences in various biological processes related to metabolism and environmental adaptation. We identified 23 815 candidate salt-responsive genes with significantly differential expression under seawater and freshwater treatments. Based on the reverse transcription–polymerase chain reaction (RT–PCR) and real-time PCR analyses, we verified the changes in expression levels for a number of candidate genes. The functional enrichment analyses for the candidate genes showed tissue-specific patterns of transcriptome remodelling upon salt stress in the roots and the leaves. The transcriptome of M. pinnata will provide valuable gene resources for future application in crop improvement. In addition, this study sets a good example for large-scale identification of salt-responsive genes in non-model organisms using the sequencing-based approach.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.

          TGICL is a pipeline for analysis of large Expressed Sequence Tags (EST) and mRNA databases in which the sequences are first clustered based on pairwise sequence similarity, and then assembled by individual clusters (optionally with quality values) to produce longer, more complete consensus sequences. The system can run on multi-CPU architectures including SMP and PVM.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.

            Full-length cDNAs are essential for functional analysis of plant genes in the post-sequencing era of the Arabidopsis genome. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. We have prepared a full-length cDNA microarray containing approximately 7000 independent, full-length cDNA groups to analyse the expression profiles of genes under drought, cold (low temperature) and high-salinity stress conditions over time. The transcripts of 53, 277 and 194 genes increased after cold, drought and high-salinity treatments, respectively, more than fivefold compared with the control genes. We also identified many highly drought-, cold- or high-salinity- stress-inducible genes. However, we observed strong relationships in the expression of these stress-responsive genes based on Venn diagram analysis, and found 22 stress-inducible genes that responded to all three stresses. Several gene groups showing different expression profiles were identified by analysis of their expression patterns during stress-responsive gene induction. The cold-inducible genes were classified into at least two gene groups from their expression profiles. DREB1A was included in a group whose expression peaked at 2 h after cold treatment. Among the drought, cold or high-salinity stress-inducible genes identified, we found 40 transcription factor genes (corresponding to approximately 11% of all stress-inducible genes identified), suggesting that various transcriptional regulatory mechanisms function in the drought, cold or high-salinity stress signal transduction pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses.

              To identify cold-, drought-, high-salinity-, and/or abscisic acid (ABA)-inducible genes in rice (Oryza sativa), we prepared a rice cDNA microarray including about 1700 independent cDNAs derived from cDNA libraries prepared from drought-, cold-, and high-salinity-treated rice plants. We confirmed stress-inducible expression of the candidate genes selected by microarray analysis using RNA gel-blot analysis and finally identified a total of 73 genes as stress inducible including 58 novel unreported genes in rice. Among them, 36, 62, 57, and 43 genes were induced by cold, drought, high salinity, and ABA, respectively. We observed a strong association in the expression of stress-responsive genes and found 15 genes that responded to all four treatments. Venn diagram analysis revealed greater cross talk between signaling pathways for drought, ABA, and high-salinity stresses than between signaling pathways for cold and ABA stresses or cold and high-salinity stresses in rice. The rice genome database search enabled us not only to identify possible known cis-acting elements in the promoter regions of several stress-inducible genes but also to expect the existence of novel cis-acting elements involved in stress-responsive gene expression in rice stress-inducible promoters. Comparative analysis of Arabidopsis and rice showed that among the 73 stress-inducible rice genes, 51 already have been reported in Arabidopsis with similar function or gene name. Transcriptome analysis revealed novel stress-inducible genes, suggesting some differences between Arabidopsis and rice in their response to stress.
                Bookmark

                Author and article information

                Journal
                DNA Res
                DNA Res
                dnares
                dnares
                DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
                Oxford University Press
                1340-2838
                1756-1663
                April 2012
                19 February 2012
                19 February 2012
                : 19
                : 2
                : 195-207
                Affiliations
                [1 ]College of Life Science, simpleShenzhen University , Shenzhen 518060, China
                [2 ]Institute of Genetics and Developmental Biology, simpleChinese Academy of Sciences , Beijing 100101, China
                [3 ]Biotechnology Research Institute, simpleChinese Academy of Agricultural Sciences , Beijing 100081, China
                Author notes
                [* ]To whom correspondence should be addressed. Tel. +86 10-64886859 (W.Z.); +86 10-82106143 (R.H.); +86 755-26558941 (Y.Z.). Fax. +86 755-26534274 (Y.Z.). Email: wkzhang@ 123456genetics.ac.cn (W.Z.); rfhuang@ 123456caas.net.cn (R.H.); yzzheng@ 123456szu.edu.cn (Y.Z.)
                [†]

                These authors contributed equally to this work.

                Edited by Satoshi Tabata

                Article
                dss004
                10.1093/dnares/dss004
                3325082
                22351699
                1a486e35-9e4c-42a9-abbf-df853618f093
                © The Author 2012. Published by Oxford University Press on behalf of Kazusa DNA Research Institute

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 November 2011
                : 17 January 2012
                Categories
                Full Papers

                Genetics
                illumina sequencing,transcriptome characterization,salt-responsive genes
                Genetics
                illumina sequencing, transcriptome characterization, salt-responsive genes

                Comments

                Comment on this article