122
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glutamine Synthetase Is a Genetic Determinant of Cell Type–Specific Glutamine Independence in Breast Epithelia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type–specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies.

          Author Summary

          Different types of cells have distinct ways of utilizing nutrients and generating energy, thus resulting in distinct nutrient needs. Such cell type–specific metabolic differences are associated with many biological processes and force the symbiosis between different cells and organisms. For example, glutamine symbiosis is a well-recognized phenomenon due to different glutamine synthesis ability. In human cancers, glutamine is also recognized as an important and essential nutrient, termed glutamine addiction. But very little is known about how glutamine addiction varies among different tumors of diverse cellular origins, which hinders personalized therapeutic strategies. Here, we found that basal-type breast cancer cells were sensitive to glutamine deprivation while luminal-type breast cancer cells were not. Luminal cell–specific glutamine independence results from expression of glutamine synthetase conferring the ability to synthesize glutamine. Glutamine synthetase also represses glutaminase and contributes to the maintenance of the polarized expression of glutamine synthetase and glutaminase among breast cancer cells. Collectively, these data illustrate cross-talk between mammary differentiation programs and unique nutrient requirements, which may offer novel therapeutics for basal-type breast cancers.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic pathway signatures in human cancers as a guide to targeted therapies.

          The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

            Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera.

              A Douglas (1998)
              Most aphids possess intracellular bacteria of the genus Buchnera. The bacteria are transmitted vertically via the aphid ovary, and the association is obligate for both partners: Bacteria-free aphids grow poorly and produce few or no offspring, and Buchnera are both unknown apart from aphids and apparently unculturable. The symbiosis has a nutritional basis. Specifically, bacterial provisioning of essential amino acids has been demonstrated. Nitrogen recycling, however, is not quantitatively important to the nutrition of aphid species studied, and there is strong evidence against bacterial involvement in the lipid and sterol nutrition of aphids. Buchnera have been implicated in various non-nutritional functions. Of these, just one has strong experimental support: promotion of aphid transmission of circulative viruses. It is argued that strong parallels may exist between the nutritional interactions (including the underlying mechanisms) in the aphid-Buchnera association and other insect symbioses with intracellular microorganisms.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2011
                August 2011
                11 August 2011
                : 7
                : 8
                : e1002229
                Affiliations
                [1 ]Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
                [2 ]Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
                [3 ]Department of Anatomy and Cell Biology, School of Medicine, National Taiwan University, Taipei, Taiwan
                [4 ]Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
                Massachusetts Institute of Technology, United States of America
                Author notes

                Conceived and designed the experiments: H-NK J-TC. Performed the experiments: H-NK. Analyzed the data: H-NK J-TC. Contributed reagents/materials/analysis tools: H-NK JRM J-TC. Wrote the paper: H-NK JRM J-TC.

                Article
                PGENETICS-D-11-00759
                10.1371/journal.pgen.1002229
                3154963
                21852960
                1c30076c-7d05-4633-b70e-4300a1616162
                Kung et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 April 2011
                : 21 June 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Physiological Processes
                Energy Metabolism
                Genetics
                Heredity
                Phenotypes
                Cancer Genetics

                Genetics
                Genetics

                Comments

                Comment on this article