49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Settling Down: The Genome of Serratia symbiotica from the Aphid Cinara tujafilina Zooms in on the Process of Accommodation to a Cooperative Intracellular Life

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Particularly interesting cases of mutualistic endosymbioses come from the establishment of co-obligate associations of more than one species of endosymbiotic bacteria. Throughout symbiotic accommodation from a free-living bacterium, passing through a facultative stage and ending as an obligate intracellular one, the symbiont experiences massive genomic losses and phenotypic adjustments. Here, we scrutinized the changes in the coevolution of Serratia symbiotica and Buchnera aphidicola endosymbionts in aphids, paying particular attention to the transformations undergone by S. symbiotica to become an obligate endosymbiont. Although it is already known that S. symbiotica is facultative in Acyrthosiphon pisum, in Cinara cedri it has established a co-obligate endosymbiotic consortium along with B. aphidicola to fulfill the aphid’s nutritional requirements. The state of this association in C. tujafilina, an aphid belonging to the same subfamily (Lachninae) that C. cedri, remained unknown. Here, we report the genome of S. symbiotica strain SCt-VLC from the aphid C. tujafilina. While being phylogenetically and genomically very closely related to the facultative endosymbiont S. symbiotica from the aphid A. pisum, it shows a variety of metabolic, genetic, and architectural features, which point toward this endosymbiont being one step closer to an obligate intracellular one. We also describe in depth the process of genome rearrangements suffered by S. symbiotica and the role mobile elements play in gene inactivations. Finally, we postulate the supply to the host of the essential riboflavin (vitamin B 2) as key to the establishment of S. symbiotica as a co-obligate endosymbiont in the aphids belonging to the subfamily Lachninane.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          ISfinder: the reference centre for bacterial insertion sequences

          ISfinder () is a dedicated database for bacterial insertion sequences (ISs). It has superseded the Stanford reference center. One of its functions is to assign IS names and to provide a focal point for a coherent nomenclature. It is also the repository for ISs. Each new IS is indexed together with information such as its DNA sequence and open reading frames or potential coding sequences, the sequence of the ends of the element and target sites, its origin and distribution together with a bibliography where available. Another objective is to continuously monitor ISs to provide updated comprehensive groupings or families and to provide some insight into their phylogenies. The site also contains extensive background information on ISs and transposons in general. Online tools are gradually being added. At present an online Blast facility against the entire bank is available. But additional features will include alignment capability, PsiBLAST and HMM profiles. ISfinder also includes a section on bacterial genomes and is involved in annotating the IS content of these genomes. Finally, this database is currently recommended by several microbiology journals for registration of new IS elements before their publication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Toward almost closed genomes with GapFiller

            De novo assembly is a commonly used application of next-generation sequencing experiments. The ultimate goal is to puzzle millions of reads into one complete genome, although draft assemblies usually result in a number of gapped scaffold sequences. In this paper we propose an automated strategy, called GapFiller, to reliably close gaps within scaffolds using paired reads. The method shows good results on both bacterial and eukaryotic datasets, allowing only few errors. As a consequence, the amount of additional wetlab work needed to close a genome is drastically reduced. The software is available at http://www.baseclear.com/bioinformatics-tools/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extreme genome reduction in symbiotic bacteria.

              Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                July 2014
                19 June 2014
                19 June 2014
                : 6
                : 7
                : 1683-1698
                Affiliations
                1Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
                2Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain
                Author notes
                *Corresponding author: E-mail: amparo.latorre@ 123456uv.es .

                Associate editor: Richard Cordaux

                Data deposition: The genome of Serratia symbiotica SCt-VLC has been deposited at GenBank/EMBL/DDBJ under the accessions FR904230, FR904231, FR904232, FR904233, FR904234, FR904235, FR904236, FR904237, FR904238, FR904239, FR904240, FR904241, FR904242, FR904243, FR904244, FR904245, FR904246, FR904247, FR904248, HG934887, HG934888, and HG934889.

                Article
                evu133
                10.1093/gbe/evu133
                4122931
                24951564
                1c31dcce-5ee3-464a-a988-b5f750d7a391
                © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 June 2014
                Page count
                Pages: 16
                Categories
                Research Article

                Genetics
                serratia symbiotica,buchnera aphidicola,co-obligate,aphid endosymbiont,genome reduction,riboflavin

                Comments

                Comment on this article