11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Landscape of Methylation Islands in Hymenopteran Insects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent genome-wide DNA methylation analyses of insect genomes accentuate an intriguing contrast compared with those in mammals. In mammals, most CpGs are heavily methylated, with the exceptions of clusters of hypomethylated sites referred to as CpG islands. In contrast, DNA methylation in insects is localized to a small number of CpG sites. Here, we refer to clusters of methylated CpGs as “methylation islands (MIs),” and investigate their characteristics in seven hymenopteran insects with high-quality bisulfite sequencing data. Methylation islands were primarily located within gene bodies. They were significantly overrepresented in exon–intron boundaries, indicating their potential roles in splicing. Methylated CpGs within MIs exhibited stronger evolutionary conservation compared with those outside of MIs. Additionally, genes harboring MIs exhibited higher and more stable levels of gene expression compared with those that do not harbor MIs. The effects of MIs on evolutionary conservation and gene expression are independent and stronger than the effect of DNA methylation alone. These results indicate that MIs may be useful to gain additional insights into understanding the role of DNA methylation in gene expression and evolutionary conservation in invertebrate genomes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          CpG islands in vertebrate genomes.

          Although vertebrate DNA is generally depleted in the dinucleotide CpG, it has recently been shown that some vertebrate genes contain CpG islands, regions of DNA with a high G+C content and a high frequency of CpG dinucleotides relative to the bulk genome. In this study, a large number of sequences of vertebrate genes were screened for the presence of CpG islands. Each CpG island was then analysed in terms of length, nucleotide composition, frequency of CpG dinucleotides, and location relative to the transcription unit of the associated gene. CpG islands were associated with the 5' ends of all housekeeping genes and many tissue-specific genes, and with the 3' ends of some tissue-specific genes. A few genes contained both 5' and 3' CpG islands, separated by several thousand base-pairs of CpG-depleted DNA. The 5' CpG islands extended through 5'-flanking DNA, exons and introns, whereas most of the 3' CpG islands appeared to be associated with exons. CpG islands were generally found in the same position relative to the transcription unit of equivalent genes in different species, with some notable exceptions. The locations of G/C boxes, composed of the sequence GGGCGG or its reverse complement CCGCCC, were investigated relative to the location of CpG islands. G/C boxes were found to be rare in CpG-depleted DNA and plentiful in CpG islands, where they occurred in 3' CpG islands, as well as in 5' CpG islands associated with tissue-specific and housekeeping genes. G/C boxes were located both upstream and downstream from the transcription start site of genes with 5' CpG islands. Thus, G/C boxes appeared to be a feature of CpG islands in general, rather than a feature of the promoter region of housekeeping genes. Two theories for the maintenance of a high frequency of CpG dinucleotides in CpG islands were tested: that CpG islands in methylated genomes are maintained, despite a tendency for 5mCpG to mutate by deamination to TpG+CpA, by the structural stability of a high G+C content alone, and that CpG islands associated with exons result from some selective importance of the arginine codon CGX. Neither of these theories could account for the distribution of CpG dinucleotides in the sequences analysed. Possible functions of CpG islands in transcriptional and post-transcriptional regulation of gene expression were discussed, and were related to theories for the maintenance of CpG islands as "methylation-free zones" in germline DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive analysis of CpG islands in human chromosomes 21 and 22.

            CpG islands are useful markers for genes in organisms containing 5-methylcytosine in their genomes. In addition, CpG islands located in the promoter regions of genes can play important roles in gene silencing during processes such as X-chromosome inactivation, imprinting, and silencing of intragenomic parasites. The generally accepted definition of what constitutes a CpG island was proposed in 1987 by Gardiner-Garden and Frommer [Gardiner-Garden, M. & Frommer, M. (1987) J. Mol. Biol. 196, 261-282] as being a 200-bp stretch of DNA with a C+G content of 50% and an observed CpG/expected CpG in excess of 0.6. Any definition of a CpG island is somewhat arbitrary, and this one, which was derived before the sequencing of mammalian genomes, will include many sequences that are not necessarily associated with controlling regions of genes but rather are associated with intragenomic parasites. We have therefore used the complete genomic sequences of human chromosomes 21 and 22 to examine the properties of CpG islands in different sequence classes by using a search algorithm that we have developed. Regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected CpG of 0.65 were more likely to be associated with the 5' regions of genes and this definition excluded most Alu-repetitive elements. We also used genome sequences to show strong CpG suppression in the human genome and slight suppression in Drosophila melanogaster and Saccharomyces cerevisiae. This finding is compatible with the recent detection of 5-methylcytosine in Drosophila, and might suggest that S. cerevisiae has, or once had, CpG methylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytosine methylation and the ecology of intragenomic parasites.

              Most of the 5-methylcytosine in mammalian DNA resides in transposons, which are specialized intragenomic parasites that represent at least 35% of the genome. Transposon promoters are inactive when methylated and, over time, C-->T transition mutations at methylated sites destroy many transposons. Apart from that subset of genes subject to X inactivation and genomic imprinting, no cellular gene in a non-expressing tissue has been proven to be methylated in a pattern that prevents transcription. It has become increasingly difficult to hold that reversible promoter methylation is commonly involved in developmental gene control; instead, suppression of parasitic sequence elements appears to be the primary function of cytosine methylation, with crucial secondary roles in allele-specific gene expression as seen in X inactivation and genomic imprinting.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                October 2018
                15 September 2018
                15 September 2018
                : 10
                : 10
                : 2766-2776
                Affiliations
                School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
                Author notes

                Hyeonsoo Jeong and Xin Wu authors contributed equally to this work.

                Corresponding author: E-mail: soojinyi@ 123456gatech.edu .
                Article
                evy203
                10.1093/gbe/evy203
                6195173
                30239702
                277b53c5-75b1-43b7-af29-5138e003493e
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 13 September 2018
                Page count
                Pages: 11
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: MCB-1615664
                Funded by: Georgia Institute of Technology 10.13039/100006778
                Categories
                Research Article

                Genetics
                dna methylation,whole-genome bisulfite sequencing,gene body methylation,methylation islands,gene expression

                Comments

                Comment on this article