119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle degenerates progressively, losing mass (sarcopenia) over time, which leads to reduced physical ability and often results in secondary diseases such as diabetes and obesity. The regulation of gene expression by microRNAs is a key event in muscle development and disease. To understand genome-wide changes in microRNAs and mRNAs during muscle aging, we sequenced microRNAs and mRNAs from mouse gastrocnemius muscles at two different ages (6 and 24 months). Thirty-four microRNAs (15 up-regulated and 19 down-regulated) were differentially expressed with age, including the microRNAs miR-206 and -434, which were differentially expressed in aged muscle in previous studies. Interestingly, eight microRNAs in a microRNA cluster at the imprinted Dlk1-Dio3 locus on chromosome 12 were coordinately down-regulated. In addition, sixteen novel microRNAs were identified. Integrative analysis of microRNA and mRNA expression revealed that microRNAs may contribute to muscle aging through the positive regulation of transcription, metabolic processes, and kinase activity. Many of the age-related microRNAs have been implicated in human muscular diseases. We suggest that genome-wide microRNA profiling will expand our knowledge of microRNA function in the muscle aging process.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Diversifying microRNA sequence and function.

          MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-145 and miR-143 Regulate Smooth Muscle Cell Fate Decisions

            SUMMARY microRNAs are regulators of myriad cellular events, but evidence for a single microRNA that can efficiently differentiate multipotent cells into a specific lineage or regulate direct reprogramming of cells into an alternate cell fate has been elusive. Here, we show that miR-145 and miR-143 are co-transcribed in multipotent cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem cell–derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2.5, and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4, myocardin, and Elk-1 to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs in development and disease.

              MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3' untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                ImpactJ
                Aging (Albany NY)
                Impact Journals LLC
                1945-4589
                July 2014
                12 July 2014
                : 6
                : 7
                : 524-544
                Affiliations
                1Aging Research Institute, Korea Research Institute of Bioscience & BioTechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
                2Medical Genomics Research Center, Korea Research Institute of Bioscience & BioTechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
                3Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
                Author notes
                Correspondence to: Ki-Sun Kwon, PhD; kwonks@ 123456kribb.re.kr ;
                Seon-Young Kim, PhD kimsy@ 123456kribb.re.kr
                Article
                10.18632/aging.100677
                4153621
                25063768
                28360f50-a0d3-4f26-9fbe-ce7c8a6bd762
                Copyright: © 2014 Kim et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 8 April 2014
                : 11 July 2014
                Categories
                Research Paper

                Cell biology
                skeletal muscle,aging,microrna profiling,imprinted dlk1-dio3,microrna cluster,novel microrna

                Comments

                Comment on this article