32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The evolutionary dynamics of repetitive DNA in eukaryotes.

          Repetitive DNA sequences form a large portion of the genomes of eukaryotes. The 'selfish DNA' hypothesis proposes that they are maintained by their ability to replicate within the genome. The behaviour of repetitive sequences can result in mutations that cause genetic diseases, and confer significant fitness losses on the organism. Features of the organization of repetitive sequences in eukaryotic genomes, and their distribution in natural populations, reflect the evolutionary forces acting on selfish DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

            The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees.

              Seq-Gen is a program that will simulate the evolution of nucleotide sequences along a phylogeny, using common models of the substitution process. A range of models of molecular evolution are implemented, including the general reversible model. Nucleotide frequencies and other parameters of the model may be given and site-specific rate heterogeneity can also be incorporated in a number of ways. Any number of trees may be read in and the program will produce any number of data sets for each tree. Thus, large sets of replicate simulations can be easily created. This can be used to test phylogenetic hypotheses using the parametric bootstrap. Seq-Gen can be obtained by WWW from http:/(/)evolve.zoo.ox.ac.uk/Seq-Gen/seq-gen.html++ + or by FTP from ftp:/(/)evolve.zoo.ox.ac.uk/packages/Seq-Gen/. The package includes the source code, manual and example files. An Apple Macintosh version is available from the same sites.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                August 2016
                04 August 2016
                04 August 2016
                : 8
                : 8
                : 2530-2543
                Affiliations
                [1 ]Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS/Université Lyon 1, Villeurbanne, France
                [2 ]Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
                Author notes

                These authors contributed equally to this work.

                [* ]Corresponding author: E-mail: aline.muyle@ 123456univ-lyon1.fr .
                Article
                evw172
                10.1093/gbe/evw172
                5010906
                27492231
                2c4ec4be-0358-4546-a3a3-6410760b9e52
                © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 18 July 2016
                Page count
                Pages: 14
                Categories
                Genome Resources

                Genetics
                xy,zw,uv,sex-linked genes,rna-seq,galaxy workflow
                Genetics
                xy, zw, uv, sex-linked genes, rna-seq, galaxy workflow

                Comments

                Comment on this article