Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of rice genome sequence by optical mapping

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data.

          Results

          To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project) and TIGR (The Institute for Genomic Research) genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies.

          Conclusion

          Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of structural differences revealed by optical maps constructed from a broad range of rice subspecies and varieties.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          A draft sequence of the rice genome (Oryza sativa L. ssp. indica).

          J. Yu (2002)
          We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accurate multiplex polony sequencing of an evolved bacterial genome.

            We describe a DNA sequencing technology in which a commonly available, inexpensive epifluorescence microscope is converted to rapid nonelectrophoretic DNA sequencing automation. We apply this technology to resequence an evolved strain of Escherichia coli at less than one error per million consensus bases. A cell-free, mate-paired library provided single DNA molecules that were amplified in parallel to 1-micrometer beads by emulsion polymerase chain reaction. Millions of beads were immobilized in a polyacrylamide gel and subjected to automated cycles of sequencing by ligation and four-color imaging. Cost per base was roughly one-ninth as much as that of conventional sequencing. Our protocols were implemented with off-the-shelf instrumentation and reagents.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A time-efficient, linear-space local similarity algorithm

                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                2007
                15 August 2007
                : 8
                : 278
                Affiliations
                [1 ]Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, UW Biotechnology Centre, 425 Henry Mall, Madison, Wisconsin 53706, USA
                [2 ]Department of Chemistry, Laboratory of Genetics; University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
                [3 ]Laboratory of Genetics; University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
                [4 ]USDA-ARS, CCRU, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
                [5 ]Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
                Article
                1471-2164-8-278
                10.1186/1471-2164-8-278
                2048515
                17697381
                2f06bec7-f38f-4ee4-b57c-c2eed182dc68
                Copyright © 2007 Zhou et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 May 2007
                : 15 August 2007
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article