29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations.

          Results

          We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance.

          Conclusions

          Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Using FlyAtlas to identify better Drosophila melanogaster models of human disease.

          FlyAtlas, a new online resource, provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cost of reproduction: the devil in the details.

            The cost of reproduction is of fundamental importance in life-history evolution. However, our understanding of its mechanistic basis has been limited by a lack of detailed functional information at all biological levels. Here, we identify, evaluate and integrate recent studies in five areas examining the proximate mechanisms underlying the cost of reproduction. Rather than being alternate explanations, hormonal regulation and intermediary metabolism act in concert and have an overarching influence in shaping the cost of reproduction. Immune function is compromised by reproduction, as is resistance to environmental stress. These studies not only provide new information about mechanisms that comprise 'the cost', but also hint at an underlying evolutionarily conserved causal mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systems Genetics of Complex Traits in Drosophila melanogaster

              SUMMARY Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically inter-correlated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression, and transcription factor binding sites. The high transcriptional connectivity allows us to infer genetic networks and the function of predicted genes based on annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provides insight into the molecular basis of pleiotropy between complex traits.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2010
                11 May 2010
                : 11
                : 297
                Affiliations
                [1 ]Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
                [2 ]Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
                [3 ]W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
                [4 ]Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
                [5 ]Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
                [6 ]Diabetes Research Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
                [7 ]Current Address: Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
                Article
                1471-2164-11-297
                10.1186/1471-2164-11-297
                2880307
                20459830
                369068f6-90fc-4758-858d-453ca8393024
                Copyright ©2010 Jumbo-Lucioni et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 January 2010
                : 11 May 2010
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article