51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effects of Ginkgo biloba extract (EGB 761) on astrocytes of rat hippocampus after exposure with scopolamine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The regular extract of Ginkgo biloba has been shown to possess neuroprotective properties in disorders like hypoxia, ischemia, seizure activity and peripheral nerve damage. Also, G. biloba has received attention as a potential cognitive enhancer for the treatment of Alzheimer's disease, but there is not any documentation about the effect of an extract of G. biloba on astrocytes. Therefore, the aim of this study was examined the effects of G. biloba extract on the rat's hippocampal astrocytes after scopolamine based amnesia. In this study, 36 adult male Wistar rats were used. Rats were randomly distributed into control, sham, protective and treatment groups. The rats in the sham group only received scopolamine hydrobromide (3 mg/kg) intraperitoneally. The rats in the protective and treatment groups received G. biloba extract (40, 80 mg/kg) for 7 days intraperitoneally before and after scopolamine injection. Forty eight hours after the last injection, the brains of the rats were withdrawn and fixed with paraformaldehide, and then after histological processing, the slices were stained with phosphotungstic acid-haematoxylin for astrocytes. Data were analyzed by the analysis of variance (ANOVA) post hoc Tukey test; P<0.05 was considered significant. Results showed that scopolamine can reduce the number of astrocytes in all areas of hippocampal formation compared with the control. However, G. biloba extract can compensate for the reduction in the number of astrocytes in the hippocampus before or after the encounter with scopolamine. We concluded that a pretreatment and treatment injection of G. biloba extract can have a protective effect for astrocytes in all areas of hippocampal formation.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Tripartite synapses: glia, the unacknowledged partner.

          According to the classical view of the nervous system, the numerically superior glial cells have inferior roles in that they provide an ideal environment for neuronal-cell function. However, there is a wave of new information suggesting that glia are intimately involved in the active control of neuronal activity and synaptic neurotransmission. Recent evidence shows that glia respond to neuronal activity with an elevation of their internal Ca2+ concentration, which triggers the release of chemical transmitters from glia themselves and, in turn, causes feedback regulation of neuronal activity and synaptic strength. In view of these new insights, this article suggests that perisynaptic Schwann cells and synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroprotective effects of Ginkgo biloba extract.

            Ginkgo biloba extract has been therapeutically used for several decades to increase peripheral and cerebral blood flow as well as for the treatment of dementia. The extract contains multiple compounds such as flavonoids and terpenoids that are thought to contribute to its neuroprotective and vasotropic effects. In this review, we summarize the experimental results on the mechanism of neuroprotection induced by standardized extract of Ginkgo biloba leaves (EGb 761) and its constituents. The effects described mostly in animals include those on cerebral blood flow, neurotransmitter systems, cellular redox state and nitric oxide level. Furthermore, we discuss the current status of clinical trials as well as undesired side effects of EGb 761.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Studies on molecular mechanisms of Ginkgo biloba extract.

              In the past decade, interest by the general public in the use of herbal dietary supplements has risen exponentially. As throughout history, individuals are now turning to the use of "natural" therapies for the prevention, treatment and cure of almost every ailment and aging malady imaginable. often without substantial proof of safety or efficacy. One of the most popular herbal supplements is Ginkgo biloba extract, taken for its perceived "memory enhancing" properties. Given the inordinate popularity, growing use, and substantial number of pharmaceutical products containing G. biloba, coupled with demands for product safety and "hard evidence," science has followed this trend closely with an ever-expanding body of pharmacological and clinical data on such preparations. Claims that standardized G. biloba extract (EGb 761) can modulate the cellular environment of an organism under both physiological and stress conditions may be attributed to its multivalent or totipotent properties, and can now be substantiated by the availability of modern molecular techniques. As opposed to pharmacologically manufactured or synthetic drugs, which provide a single target for a single receptor as the mechanism of action, EGb 761 is able to up- or down-regulate signaling pathways, gene transcription, cellular metabolism, etc., and thus assist in the regulation of the general physiological status of the cell and/or organism in response to stressors posed by both intracellular and extracellular conditions. Presumably, this is one of the biggest advantages of using natural products for the prevention and treatment of infirmity, as well as the maintenance of health in an organism. Copyright 2004 Springer-Verlag
                Bookmark

                Author and article information

                Journal
                Anat Cell Biol
                Anat Cell Biol
                ACB
                Anatomy & Cell Biology
                Korean Association of Anatomists
                2093-3665
                2093-3673
                June 2012
                30 June 2012
                : 45
                : 2
                : 92-96
                Affiliations
                [1 ]Neuroscience Research Center, Department of Anatomy, Golestan University of Medical Sciences, Gorgan, Iran.
                [2 ]Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
                [3 ]Golestan University of Medical Sciences, Gorgan, Iran.
                Author notes
                Corresponding author: Mehrdad Jahanshahi. Department of Anatomy, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, km 4 Gorgan-Sari road (Shastcola), Gorgan, Iran. Tel: +98-171-4420515, Fax: +98-171-4420515, mejahanshahi@ 123456yahoo.com
                Article
                10.5115/acb.2012.45.2.92
                3398180
                22822463
                37e4038d-3011-4e9c-952b-e225b6b8261a
                Copyright © 2012. Anatomy & Cell Biology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 09 March 2012
                : 14 May 2012
                Categories
                Original Article
                Neurobiology

                Cell biology
                hippocampus,rat,ginkgo biloba extract,astrocytes
                Cell biology
                hippocampus, rat, ginkgo biloba extract, astrocytes

                Comments

                Comment on this article