3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the biosphere, the largest biological laboratory, increased anthropogenic activities have led microbes to evolve and adapt to the changes occurring in the environment. Compounds, specifically xenobiotics, released due to such activities persist in nature and undergo bio-magnification in the food web. Some of these compounds act as potent endocrine disrupters, mutagens or carcinogens, and therefore their removal from the environment is essential. Due to their persistence, microbial communities have evolved to metabolize them partially or completely. Diverse biochemical pathways have evolved or been assembled by exchange of genetic material (horizontal gene transfer) through various mobile genetic elements like conjugative and non-conjugative plasmids, transposons, phages and prophages, genomic islands and integrative conjugative elements. These elements provide an unlimited opportunity for genetic material to be exchanged across various genera, thus accelerating the evolution of a new xenobiotic degrading phenotype. In this article, we illustrate examples of the assembly of metabolic pathways involved in the degradation of naphthalene and its derivative, Carbaryl, which are speculated to have evolved or adapted through the above-mentioned processes.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes.

          The compositions of bacterial genomes can be changed rapidly and dramatically through a variety of processes including horizontal gene transfer. This form of change is key to bacterial evolution, as it leads to 'evolution in quantum leaps'. Horizontal gene transfer entails the incorporation of genetic elements transferred from another organism-perhaps in an earlier generation-directly into the genome, where they form 'genomic islands', i.e. blocks of DNA with signatures of mobile genetic elements. Genomic islands whose functions increase bacterial fitness, either directly or indirectly, have most likely been positively selected and can be termed 'fitness islands'. Fitness islands can be divided into several subtypes: 'ecological islands' in environmental bacteria and 'saprophytic islands', 'symbiosis islands' or 'pathogenicity islands' (PAIs) in microorganisms that interact with living hosts. Here we discuss ways in which PAIs contribute to the pathogenic potency of bacteria, and the idea that genetic entities similar to genomic islands may also be present in the genomes of eukaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactions of cyclic hydrocarbons with biological membranes.

            Many cyclic hydrocarbons, e.g. aromatics, cycloalkanes, and terpenes, are toxic to microorganisms. The primary site of the toxic action is probably the cytoplasmic membrane, but the mechanism of the toxicity is still poorly understood. The effects of cyclic hydrocarbons were studied in liposomes prepared from Escherichia coli phospholipids. The membrane-buffer partition coefficients of the cyclic hydrocarbons revealed that these lipophilic compounds preferentially reside in the membrane. The partition coefficients closely correlated with the partition coefficients of these compounds in a standard octanol-water system. The accumulation of hydrocarbon molecules resulted in swelling of the membrane bilayer, as assessed by the release of fluorescence self-quenching of fluorescent fatty acid and phospholipid analogs. Parallel to the expansion of the membrane, an increase in membrane fluidity was observed. These effects on the integrity of the membrane caused an increased passive flux of protons and carboxyfluorescein. In cytochrome c oxidase containing proteoliposomes, both components of the proton motive force, the pH gradient and the electrical potential, were dissipated with increasing concentrations of cyclic hydrocarbons. The dissipating effect was primarily the result of an increased permeability of the membrane for protons (ions). At higher concentrations, cytochrome c oxidase was also inactivated. The effective concentrations of the different cyclic hydrocarbons correlated with their partition coefficients between the membrane and aqueous phase. The impairment of microbial activity by the cyclic hydrocarbons most likely results from hydrophobic interaction with the membrane, which affects the functioning of the membrane and membrane-embedded proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Principles of microbial PAH-degradation in soil.

              Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                27 July 2019
                August 2019
                : 10
                : 8
                : 569
                Affiliations
                Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
                Author notes
                [* ]Correspondence: pphale@ 123456iitb.ac.in
                Article
                genes-10-00569
                10.3390/genes10080569
                6723655
                31357661
                38fedd61-772e-4b7c-9b0e-08b1172d03b6
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 May 2019
                : 11 July 2019
                Categories
                Review

                xenobiotics,naphthalene,carbaryl,horizontal gene transfer,mobile genetic elements,transposons,integrative conjugative elements,pathway assembly,evolution

                Comments

                Comment on this article