+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative evaluation of push-out bond strength of ProRoot MTA, Biodentine, and MTA Plus in furcation perforation repair


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Few studies have comparatively evaluated the push-out bond strength of different calcium silicate–based materials (CSMs) used in furcal perforation repair. The objective of this in vitro study was to comparatively evaluate the push-out bond strength of commercially available CSMs used as furcation repair materials, in the presence of blood contamination.

          Materials and Methods:

          Furcal perforations were made in 120 molars and were divided on the basis of the repair material used (ProRoot MTA, Biodentine, and MTA Plus), blood contamination, and duration of setting time (24 h vs. 7 days). Push-out bond strength was measured and analyzed by three-way analysis of variance (ANOVA) test.


          Push-out bond strength increased with time. The 24-h push-out strength of MTA was less than that of Biodentine. Blood contamination affected the push-out bond strength of MTA Plus irrespective of the setting time.


          Caution should be taken while condensing restorative materials over furcation repair materials.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action.

          Mineral trioxide aggregate (MTA) has been recommended for various uses in endodontics. Two previous publications provided a comprehensive list of articles from November 1993-September 2009 regarding the chemical and physical properties, sealing ability, antibacterial activity, leakage, and biocompatibility of MTA. The purpose of Part III of this literature review is to present a comprehensive list of articles regarding animal studies, clinical applications, drawbacks, and mechanism of action of MTA. A review of the literature was performed by using electronic and hand-searching methods for the clinical applications of MTA in experimental animals and humans as well as its drawbacks and mechanism of action from November 1993-September 2009. MTA is a promising material for root-end filling, perforation repair, vital pulp therapy, and apical barrier formation for teeth with necrotic pulps and open apexes. Despite the presence of numerous case reports and case series regarding these applications, there are few designed research studies regarding clinical applications of this material. MTA has some known drawbacks such as a long setting time, high cost, and potential of discoloration. Hydroxyapatite crystals form over MTA when it comes in contact with tissue synthetic fluid. This can act as a nidus for the formation of calcified structures after the use of this material in endodontic treatments. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. More clinical studies are needed to confirm its efficacy compared with other materials. Copyright (c) 2010. Published by Elsevier Inc.
            • Record: found
            • Abstract: found
            • Article: not found

            Physicochemical basis of the biologic properties of mineral trioxide aggregate.

            This study characterized the interactions of mineral trioxide aggregate with a synthetic tissue fluid composed of a neutral phosphate buffer saline solution and root canal dentin in extracted human teeth using inductively coupled plasma-atomic emission spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction. Mineral trioxide aggregate exposed to synthetic tissue fluid at 37 degrees C released its metallic constituents and produced precipitates with a composition and structure similar to that of hydroxyapatite [Ca10(PO4)6(OH)2-HA]. Endodontically prepared teeth filled with mineral trioxide aggregate and stored in synthetic tissue fluid at 37 degrees C for 2 months produced at the dentin wall an adherent interfacial layer that resembled hydroxyapatite in composition. The authors conclude that Ca, the dominant ion released from mineral trioxide aggregate, reacts with phosphates in synthetic tissue fluid, yielding hydroxyapatite. The dentin-mineral trioxide aggregate interfacial layer results from a similar reaction. The sealing ability, biocompatibility, and dentinogenic activity of mineral trioxide aggregate is attributed to these physicochemical reactions.
              • Record: found
              • Abstract: found
              • Article: not found

              Mineral trioxide aggregate material use in endodontic treatment: a review of the literature.

              The purpose of this paper was to review the composition, properties, biocompatibility, and the clinical results involving the use of mineral trioxide aggregate (MTA) materials in endodontic treatment. Electronic search of scientific papers from January 1990 to August 2006 was accomplished using PubMed and Scopus search engines (search terms: MTA, GMTA, WMTA, mineral AND trioxide AND aggregate). Selected exclusion criteria resulted in 156 citations from the scientific, peer-reviewed dental literature. MTA materials are derived from a Portland cement parent compound and have been demonstrated to be biocompatible endodontic repair materials, with its biocompatible nature strongly suggested by its ability to form hydroxyappatite when exposed to physiologic solutions. With some exceptions, MTA materials provide better microleakage protection than traditional endodontic repair materials using dye, fluid filtration, and bacterial penetration leakage models. In both animal and human studies, MTA materials have been shown to have excellent potential as pulp-capping and pulpotomy medicaments but studies with long-term follow-up are limited. Preliminary studies suggested a favorable MTA material use as apical and furcation restorative materials as well as medicaments for apexogenesis and apexification treatments; however, long-term clinical studies are needed in these areas. MTA materials have been shown to have a biocompatible nature and have excellent potential in endodontic use. MTA materials are a refined Portland cement material and the substitution of Portland cement for MTA products is presently discouraged. Existing human studies involving MTA materials are very promising, however, insufficient randomized, double-blind clinical studies of sufficient duration exist involving MTA for all of its clinical indications. Further clinical studies are needed in these areas.

                Author and article information

                J Conserv Dent
                J Conserv Dent
                Journal of Conservative Dentistry : JCD
                Medknow Publications & Media Pvt Ltd (India )
                Sep-Oct 2013
                : 16
                : 5
                : 462-465
                [1]Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
                [1 ]Department of Conservative Dentistry and Endodontics, SGT Dental College, Gurgaon, India
                Author notes
                Address for correspondence: Dr. Vivek Aggarwal, Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi - 110 024, India. E-mail: drvivekaggarwal@ 123456gmail.com
                Copyright: © Journal of Conservative Dentistry

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 03 March 2013
                : 12 June 2013
                : 16 July 2013
                Original Article

                furcation perforation,proroot mta,push-out bond strength,repair materials
                furcation perforation, proroot mta, push-out bond strength, repair materials


                Comment on this article