7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA-seq analysis of gene expression changes during pupariation in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The oriental fruit fly, Bactrocera dorsalis (Hendel) has been considered to be one of the most important agricultural pest around the world. As a holometabolous insect, larvae must go through a metamorphosis process with dramatic morphological and structural changes to complete their development. To better understand the molecular mechanisms of these changes, RNA-seq of B. dorsalis from wandering stage (WS), late wandering stage (LWS) and white puparium stage (WPS) were performed.

          Results

          In total, 11,721 transcripts were obtained, out of which 1914 genes (578 up-regulated and 1336 down-regulated) and 2047 genes (655 up-regulated and 1392 down-regulated) were found to be differentially expressed between WS and LWS, as well as between WS and WPS, respectively. Of these DEGs, 1862 and 1996 genes were successfully annotated in various databases. The analysis of RNA-seq data together with qRT-PCR validation indicated that during this transition, the genes in the oxidative phosphorylation pathway, and genes encoding P450s, serine protease inhibitor, and cuticular proteins were down-regulated, while the serine protease genes were up-regulated. Moreover, we found some 20-hydroxyecdysone (20E) biosynthesis and signaling pathway genes had a higher expression in the WS, while the genes responsible for juvenile hormone (JH) synthesis, degradation, signaling and transporter pathways were down-regulated, suggesting these genes might be involved in the process of larval pupariation in B. dorsalis. For the chitinolytic enzymes, the genes encoding chitinases (chitinase 2, chitinase 5, chitinase 8, and chitinase 10) and chitin deacetylase might play the crucial role in the degradation of insect chitin with their expressions significantly increased during the transition. Here, we also found that chitin synthase 1A might be involved in the chitin synthesis of cuticles during the metamorphosis in B. dorsalis.

          Conclusions

          Significant changes at transcriptional level were identified during the larval pupariation of B. dorsalis. Importantly, we also obtained a vast quantity of RNA-seq data and identified metamorphosis associated genes, which would all help us to better understand the molecular mechanism of metamorphosis process in B. dorsalis.

          Electronic supplementary material

          The online version of this article (10.1186/s12864-018-5077-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

          As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus.

            Pyrethroid insecticides are critical for malaria control in Africa. However, resistance to this insecticide class in the malaria vector Anopheles funestus is spreading rapidly across Africa, threatening the success of ongoing and future malaria control programs. The underlying resistance mechanisms driving the spread of this resistance in wild populations remain largely unknown. Here, we show that increased expression of two tandemly duplicated P450 genes, CYP6P9a and CYP6P9b, is the main mechanism driving pyrethroid resistance in Malawi and Mozambique, two southern African countries where this insecticide class forms the mainstay of malaria control. Genome-wide transcription analysis using microarray and quantitative RT-PCR consistently revealed that CYP6P9a and CYP6P9b are the two genes most highly overexpressed (>50-fold; q < 0.01) in permethrin-resistant mosquitoes. Transgenic expression of CYP6P9a and CYP6P9b in Drosophila melanogaster demonstrated that elevated expression of either of these genes confers resistance to both type I (permethrin) and type II (deltamethrin) pyrethroids. Functional characterization of recombinant CYP6P9b confirmed that this protein metabolized both type I (permethrin and bifenthrin) and type II (deltamethrin and Lambda-cyhalothrin) pyrethroids but not DDT. Variability analysis identified that a single allele of each of these genes is predominantly associated with pyrethroid resistance in field populations from both countries, which is suggestive of a single origin of this resistance that has since spread across the region. Urgent resistance management strategies should be implemented in this region to limit a further spread of this resistance and minimize its impact on the success of ongoing malaria control programs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis.

              The Krüppel homolog 1 gene (Kr-h1) has been proposed to play a key role in the repression of insect metamorphosis. Kr-h1 is assumed to be induced by juvenile hormone (JH) via a JH receptor, methoprene-tolerant (Met), but the mechanism of induction is unclear. To elucidate the molecular mechanism of Kr-h1 induction, we first cloned cDNAs encoding Kr-h1 (BmKr-h1) and Met (BmMet1 and BmMet2) homologs from Bombyx mori. In a B. mori cell line, BmKr-h1 was rapidly induced by subnanomolar levels of natural JHs. Reporter assays identified a JH response element (kJHRE), comprising 141 nucleotides, located ∼2 kb upstream from the BmKr-h1 transcription start site. The core region of kJHRE (GGCCTCCACGTG) contains a canonical E-box sequence to which Met, a basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) transcription factor, is likely to bind. In mammalian HEK293 cells, which lack an intrinsic JH receptor, ectopic expression of BmMet2 fused with Gal4DBD induced JH-dependent activity of an upstream activation sequence reporter. Meanwhile, the kJHRE reporter was activated JH-dependently in HEK293 cells only when cotransfected with BmMet2 and BmSRC, another bHLH-PAS family member, suggesting that BmMet2 and BmSRC jointly interact with kJHRE. We also found that the interaction between BmMet2 and BmSRC is dependent on JH. Therefore, we propose the following hypothesis for the mechanism of JH-mediated induction of BmKr-h1: BmMet2 accepts JH as a ligand, JH-liganded BmMet2 interacts with BmSRC, and the JH/BmMet2/BmSRC complex activates BmKr-h1 by interacting with kJHRE.
                Bookmark

                Author and article information

                Contributors
                erhuchen1104@yahoo.com
                houqiuli2000@126.com
                douwei80@swu.edu.cn
                weidandande@163.com
                yongyue19920212@163.com
                maryyrl@163.com
                yushuaifeng@swu.edu.cn
                kristof.deschutter@ugent.be
                guy.smagghe@ugent.be
                wangjinjun@swu.edu.cn
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                21 September 2018
                21 September 2018
                2018
                : 19
                : 693
                Affiliations
                [1 ]GRID grid.263906.8, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, , Southwest University, ; Chongqing, 400715 China
                [2 ]GRID grid.263906.8, Academy of Agricultural Sciences, , Southwest University, ; Chongqing, 400715 China
                [3 ]ISNI 0000 0001 2069 7798, GRID grid.5342.0, Department of Plants and Crops, , Ghent University, ; 9000 Ghent, Belgium
                Author information
                http://orcid.org/0000-0002-8777-5268
                Article
                5077
                10.1186/s12864-018-5077-z
                6150976
                30241467
                3d5f30f3-5262-4995-9695-96aa1eb7dae0
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 December 2017
                : 13 September 2018
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Genetics
                bactrocera dorsalis,pupariation ,metamorphosis,rna-seq,gene expression
                Genetics
                bactrocera dorsalis, pupariation , metamorphosis, rna-seq, gene expression

                Comments

                Comment on this article