192
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of anti-aging drugs by treating age-related diseases

      review-article
      Aging
      Impact Journals LLC
      anti-aging drugs, diseases, cancer, atherosclerosis, resveratrol, rapamycin, metformin

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humans die from age-related diseases, which are deadly manifestations of the aging process. In order to extend life span, an anti-aging drug must delay age-related diseases. All together age-related diseases are the best biomarker of aging. Once a drug is used for treatment of any one chronic disease, its effect against other diseases (atherosclerosis, cancer, prostate enlargement, osteoporosis, insulin resistance, Alzheimer's and Parkinson's diseases, age-related macular degeneration) may be evaluated in the same group of patients. If the group is large, then the anti-aging effect could be validated in a couple of years. Startlingly, retrospective analysis of clinical and preclinical data reveals four potential anti-aging modalities.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway.

          In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

            Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Genetics: influence of TOR kinase on lifespan in C. elegans.

                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                ImpactJ
                Aging
                Impact Journals LLC
                1945-4589
                March 2009
                28 March 2009
                : 1
                : 3
                : 281-288
                Affiliations
                Cancer Center, Ordway Research Institute, Albany, NY 12208, USA
                Author notes
                Correspondence: Mikhail V. Blagosklonny, MD, PhD, Roswell Park Cancer Institute, Elm St., Buffalo, NY 14203, USA Blagosklonny@ 123456oncotarget.com
                Article
                10.18632/aging.100034
                2806014
                20157517
                40e03cf3-b8f6-4d9a-add3-e1f495bc5c5d
                Copyright: ©2009 Blagosklonny.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 September 2008
                : 28 March 2009
                Categories
                Review

                Cell biology
                cancer,diseases,atherosclerosis,anti-aging drugs,rapamycin,metformin,resveratrol
                Cell biology
                cancer, diseases, atherosclerosis, anti-aging drugs, rapamycin, metformin, resveratrol

                Comments

                Comment on this article