Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia-induced the upregulation of stromal cell-derived factor 1 in fibroblast-like synoviocytes contributes to migration of monocytes into synovium tissue in rheumatoid arthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rheumatoid arthritis (RA) is an auto-immune disease characterized by chronic inflammation of multiple joints. Hypoxia is a constant feature of synovial microenvironment in RA. Fibroblast-like synoviocytes (FLSs), which are potent effector cells in RA. It has been reported that large numbers of monocytes are recruited to the synovium and play an important role in synovial inflammation and tissue destruction in RA. However, the mechanism is still unclear. The aim of this study is to explore the role of hypoxia microenvironment on the recruitment of monocytes and then promote the development of RA.

          Methods

          Rheumatoid arthritis model was constructed. Monocytes and FLSs were isolated from rheumatoid arthritis mice. RT-PCR, western blot and ELISA were used to detect the expression of SDF-1 in FLSs. CXCR4 expression in monocytes was examined by cell immunofluorescence and flow cytometry analysis. Transwell assay was performed to evaluate the potential of cell migration.

          Results

          We demonstrated that hypoxia microenvironment enhanced SDF-1 production of FLSs, which attracted the recruitment of CXCR4-expressing monocytes to the synovium and induced monocytes differentiation into tissue macrophages. Moreover, these macrophages secreted inflammatory factors including IL-6, TNF-α, IL-1β and MMP-3, which contributed to the synovial inflammation and tissue destruction in RA.

          Conclusion

          The results of this study suggested that hypoxia microenvironment played an important role in enhancing SDF-1 production of FLSs. SDF-1/CXCR4 axis was involved in the recruitment of monocytes in RA synovium and it might be a possible way of inhibiting inflammation and bone erosion in RA.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.

          The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with rheumatic diseases other than RA (non-RA). The new criteria are as follows: 1) morning stiffness in and around joints lasting at least 1 hour before maximal improvement; 2) soft tissue swelling (arthritis) of 3 or more joint areas observed by a physician; 3) swelling (arthritis) of the proximal interphalangeal, metacarpophalangeal, or wrist joints; 4) symmetric swelling (arthritis); 5) rheumatoid nodules; 6) the presence of rheumatoid factor; and 7) radiographic erosions and/or periarticular osteopenia in hand and/or wrist joints. Criteria 1 through 4 must have been present for at least 6 weeks. Rheumatoid arthritis is defined by the presence of 4 or more criteria, and no further qualifications (classic, definite, or probable) or list of exclusions are required. In addition, a "classification tree" schema is presented which performs equally as well as the traditional (4 of 7) format. The new criteria demonstrated 91-94% sensitivity and 89% specificity for RA when compared with non-RA rheumatic disease control subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis.

            Rheumatoid arthritis (RA) remains a significant unmet medical need despite significant therapeutic advances. The pathogenesis of RA is complex and includes many cell types, including T cells, B cells, and macrophages. Fibroblast-like synoviocytes (FLS) in the synovial intimal lining also play a key role by producing cytokines that perpetuate inflammation and proteases that contribute to cartilage destruction. Rheumatoid FLS develop a unique aggressive phenotype that increases invasiveness into the extracellular matrix and further exacerbates joint damage. Recent advances in understanding the biology of FLS, including their regulation regulate innate immune responses and activation of intracellular signaling mechanisms that control their behavior, provide novel insights into disease mechanisms. New agents that target FLS could potentially complement the current therapies without major deleterious effect on adaptive immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Interplay Between Monocytes/Macrophages and CD4+ T Cell Subsets in Rheumatoid Arthritis

              Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis). The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation, and excessive production of proinflammatory mediators, such as tumor necrosis factor α (TNFα), interferon γ (IFNγ), interleukin (IL)-1β, IL-6, and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages, and CD4+ T cells (both proinflammatory and regulatory). The interplay between CD14+ myeloid cells and CD4+ T cells can significantly influence CD4+ T cell function, and conversely, effector vs. regulatory CD4+ T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4+ T cells and monocytes/macrophages may contribute to the immunopathology of RA.
                Bookmark

                Author and article information

                Contributors
                yangru923@126.com
                yhyao99@163.com
                wangpanjun198524@163.com
                Journal
                Cell Biosci
                Cell Biosci
                Cell & Bioscience
                BioMed Central (London )
                2045-3701
                14 February 2018
                14 February 2018
                2018
                : 8
                : 11
                Affiliations
                [1 ]ISNI 0000 0004 1762 8363, GRID grid.452666.5, Department of Rheumatology, , The Second Affiliated Hospital of Soochow University, ; Soochow, Jiangsu China
                [2 ]GRID grid.452253.7, Department of Hematology and Oncology, , The Children’s Hospital of Soochow University, ; Soochow, Jiangsu China
                [3 ]ISNI 0000 0004 1762 8363, GRID grid.452666.5, Department of Hematology, , The Second Affiliated Hospital of Soochow University, ; Soochow, Jiangsu China
                Article
                210
                10.1186/s13578-018-0210-x
                5813381
                29456830
                48b6e338-39cb-46b5-b4e6-f68f54218b88
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 October 2017
                : 1 February 2018
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Cell biology
                rheumatoid arthritis,hypoxia,fibroblast-like synoviocytes,monocytes,sdf-1,cxcr4,inflammatory factors

                Comments

                Comment on this article